Vieta's Formulas Handout Answers and Solutions Walker Kroubalkian December 5, 2017

1 Answers

1. 16

- **2.** 78
- **3.** 7
- **4.** -2
- **5.** 35
- **6.** 1
- **7.** 330
- **8.** 256
- **9.** $3 + \sqrt{7}$
- **10.** 0
- **11.** 6
- 12. $-\frac{3}{11}$
- **13.** 3
- **14.** 753
- **15.** -24

2 Solutions

1. The zeroes of the function $f(x) = x^2 - ax + 2a$ are integers. What is the sum of the possible values of a?

Solution: Let the roots be b and c. Then we have that a = b + c and 2a = bc. It follows that bc = 2b + 2c. We can rewrite this equation as (b-2)(c-2) = 4. Clearly, the only integer solutions to this equation are (b, c) = (6, 3), (4, 4), (3, 6), (1, -2), (0, 0), and (-2, 1). The corresponding values of a are 9, 8, -1, and 0. It follows that our answer is 9 + 8 - 1 = 16 as desired.

2. The polynomial $x^3 - ax^2 + bx - 2010$ has three positive integer roots. What is the smallest possible value of *a*?

Solution: Let the roots be p, q, and r. We know that pqr = 2010, and we wish to minimize p + q + r. $2010 = 2 \cdot 3 \cdot 5 \cdot 67$. We need one of p, q, and r to be divisible by 67, and because 67 is such a large prime, it makes sense to let one of p, q, and r to be equal to 67. WLOG, let p = 67. It

follows that qr = 30. By AM - GM, the sum q + r will be minimized when q and r are as close to $\sqrt{30}$ as possible. It follows that the sum will be minimized when (q, r) is a permutation of (5, 6). Therefore, the minimum value of a is $67 + 5 + 6 = \boxed{78}$.

3. Let P be a cubic monic polynomial with roots a, b, and c. If P(1) = 91 and P(-1) = -121, compute the maximum possible value of

$$\frac{ab+bc+ca}{abc+a+b+c}.$$

Solution: We can write P(x) as $P(x) = x^3 - (a+b+c)x^2 + (ab+ac+bc)x - abc$. We know that P(1) = (1+ab+ac+bc) - (a+b+c+abc) = 91 and that -1 - (a+b+c) - (ab+ac+bc) - abc = -121. Letting 1+ab+ac+bc = x and a+b+c+abc = y, it follows that x-y = 91 and x+y = 121, and therefore $x = \frac{91+121}{2} = 106$ and y = 106 - 91 = 15. Therefore, the maximum value of $\frac{ab+bc+ca}{abc+a+b+c}$ is the maximum value of $\frac{x-1}{y}$ which is $\frac{105}{15} = \boxed{7}$.

4. Let *a*, *b*, and *c* be the 3 roots of $x^3 - x + 1 = 0$. Find $\frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1}$.

Solution: We will begin by finding the polynomial P which has roots a + 1, b + 1, and c + 1. We know that a + 1 + b + 1 + c + 1 = a + b + c + 3 = 3. We know that (a + 1)(b + 1) + (a + 1)(c + 1) + (b + 1)(c + 1) = ab + ac + bc + 2(a + b + c) + 3 = -1 + 3 = 2. Finally, we know that (a + 1)(b + 1)(c + 1) = abc + ab + ac + bc + a + b + c + 1 = -1 - 1 + 1 = -1. Therefore, a polynomial P with roots of a + 1, b + 1, and c + 1 is $P(x) = x^3 - 3x + 2x^2 + 1$. We wish to determine $\frac{(a+1)(b+1)(c+1) + (b+1)(c+1)}{(a+1)(b+1)(c+1)} = \frac{2}{-1} = \boxed{-2}$ as desired.

5. Find the sum of all the real values of x satisfying $(x + \frac{1}{x} - 17)^2 = x + \frac{1}{x} + 17$.

Solution: Let $x + \frac{1}{x} - 17 = a$. Then we have that $a^2 = a + 34$. Solving, we get $a = \frac{1\pm\sqrt{137}}{2}$. This means that if we let $x + \frac{1}{x} = b$, then we have that $b = \frac{35\pm\sqrt{127}}{2}$. First we will look at the case when $x + \frac{1}{x} = \frac{35+\sqrt{127}}{2}$. Rearranging, we get $x^2 - (\frac{35+\sqrt{127}}{2})x + 1 = 0$. By Vieta's Formulas, the sum of the values of x which satisfy this is $\frac{35+\sqrt{127}}{2}$. When $x + \frac{1}{x} = \frac{35-\sqrt{127}}{2}$, we can similarly find that the sum of the values of x which satisfy this is $\frac{35-\sqrt{127}}{2}$. Because these two quadratics do not share any roots, the sum of the values of x which satisfy the original equation is $\frac{70}{2} = \boxed{35}$.

6. The sum of the squares of the roots of the equation $x^2 + 2hx = 3$ is 10. Compute the absolute value of h.

Solution: Let the roots be a and b. Then we know a + b = -2h and that ab = -3. We also know that $a^2 + b^2 = (a + b)^2 - 2ab = 4h^2 + 6 = 10$. It follows that $h^2 = 1$, and therefore, the absolute value of h is $\boxed{1}$.

7. Find the sum of the real roots of the polynomial

$$\prod_{k=1}^{100} (x^2 - 11x + k) = (x^2 - 11x + 1)(x^2 - 11x + 2)...(x^2 - 11x + 100).$$

Solution: We can remember by the Quadratic formula that the roots of the quadratic $x^2 - 11x + k$ will only be real when its discriminant 121 - 4k is not negative. Clearly, this will only occur when $k \leq 30$. Therefore, 30 of the quadratics in the product have real roots, and it follows that the sum of those real roots is $11 \cdot 30 = \boxed{330}$.

8. The roots of the polynomial $P(x) = x^3 + 5x + 4$ are r, s, and t. Evaluate $(r+s)^4(s+t)^4(t+r)^4$.

Solution: Notice that because r + s + t = 0, this product is equivalent to $(-r)^4(-s)^4(-t^4) = (rst)^4 = (-4)^4 = 256$.

9. Let x and y be real numbers with x > y such that $x^2y^2 + x^2 + y^2 + 2xy = 40$ and xy + x + y = 8. Find the value of x.

Solution: Let x + y = a and let xy = b. Then we have that $a^2 + b^2 = 40$ and a + b = 8. It follows that $ab = \frac{8^2 - 40}{2} = 12$. It follows that a and b are roots of the quadratic $z^2 - 8z + 12 = 0$, and therefore, the pair (a, b) is a permutation of (6, 2). It follows that x and y are either roots of the quadratic $z^2 - 6z + 2$ or the roots of the quadratic $z^2 - 2z + 6$. Because the roots of the second quadratic are complex, we must have that x and y are the roots of $z^2 - 6z + 2$. It follows that x is the greater root of this quadratic, or $\frac{6+\sqrt{28}}{2} = 3 + \sqrt{7}$.

10. The polynomial $x^4 + ax^3 + bx^2 + cx + d$ has a root at x = 0 and a double root at x = -2. What is the value of d?

Solution: Because d is the product of the roots and 0 is a root, we must have d = 0.

11. Find the sum of the squares of the roots of the polynomial $x^2 + 2x - 1$.

Solution: Let the roots be a and b. We know that a + b = -2 and ab = -1. It follows that $a^2 + b^2 = (a + b)^2 - 2ab = 4 + 2 = 6$.

12. Let
$$r_1, r_2, r_3$$
 be the roots of $f(x) = x^3 - 6x^2 - 5x + 22$. Find $\frac{1}{r_1r_2} + \frac{1}{r_2r_3} + \frac{1}{r_3r_1}$.

Solution: Notice that because $r_1r_2r_3 = -22$, we must have that $\frac{1}{r_1r_2} = \frac{1}{\frac{-22}{r_3}} = -\frac{r_3}{22}$ and similar

results for the other fractions. Therefore, our answer is $-\frac{1}{22}(r_1 + r_2 + r_3) = \boxed{-\frac{3}{11}}$.

13. Let x be the answer to this question. What is the sum of possible values of the average of the numbers $\{-16x, 3x^2, 10x\}$?

Solution: We wish to investigate the average of $3x^2$, 10x, and -16x which is $x^2 - 2x$. We are given that the sum of the possible values of this function is equal to x, so we must have $x^2 - 2x = x$. It follows that either x = 0, or x = 3. Therefore, our answer is 3.

14. Let r, s, and t be the three roots of the equation $8x^3 + 1001x + 2008 = 0$. Find

$$(r+s)^3 + (s+t)^3 + (t+r)^3.$$

Solution: Notice that r + s + t = 0. Therefore, we wish to find $-(r^3 + s^3 + t^3)$. Notice that we have that $r^3 = \frac{-1001r - 2008}{8}$, and we get similar equations for r and s. Therefore, we wish to find $\frac{1001(r+s+t)+6024}{8} = \frac{6024}{8} = \boxed{753}$.

15. The function $f(x) = x^5 - 20x^4 + ax^3 + bx^2 + cx + 24$ has the interesting property that its roots can be arranged to form an arithmetic sequence. Determine f(8).

Solution: Notice that if the roots are m - 2d, m - d, m, m + d, and m + 2d, then the sum of the roots is 5m = 20, meaning that the middle root is 4. We also have that the product of the roots is $(m^2 - 4d^2)(m^2 - d^2)m = -24$. Plugging in m = 4, we get $(16 - 4d^2)(16 - d^2) = -6$. Letting $d^2 = b$, we have that $4b^2 - 80b + 262 = 0$. Solving, we get $b = 10 \pm \sqrt{\frac{69}{2}}$. We wish to calculate $(8 - m + d)(8 - m - d)(8 - m - 2d)(8 - m + 2d)(8 - m) = (4 + d)(4 - d)(4 - 2d)(4 + 2d)4 = 4(16 - d^2)(16 - 4d^2) = 1024 - 320d^2 + 16d^4 = 1024 - 320b + 16b^2$. We can observe that regardless

of which value of b we choose, the value of this quadratic will be $269 \cdot 8 - 3200 + 1024 = \boxed{-24}$ as desired.

Note: It was not until after I used this solution that I noticed that because 8 is double the value of the middle term, the sequence 8 - m - 2d, 8 - m - d, 8 - m, 8 - m + d, 8 - m + 2d is the same as the sequence m - 2d, m - d, m + d, m + 2d. It follows that the product of each of the first values is actually the product of the roots, which with Vieta's is trivially [-24].

3 Sources

- **1.** 2015 AMC 10A Problem 23
- **2.** 2010 AMC 10A Problem 21
- 3. National Internet Math Olympiad Summer Contest 2017 Problem 9
- 4. 2009 February Harvard MIT Math Tournament Algebra Problem 5
- 5. 2015 Purple Comet High School Problem 10
- 6. 1971 American High School Math Exam Problem 20
- 7. National Internet Math Olympiad Summer Contest 2013 Problem 4
- 8. National Internet Math Olympiad Summer Contest 2011 Problem 9
- 9. 2013 February Harvard MIT Math Tournament Algebra Problem 1
- 10. 2014 Berkeley Math Tournament Fall Speed Round Problem 38
- 11. 2014 Berkeley Math Tournament Fall Speed Round Problem 42
- 12. 2013 Berkeley Math Tournament Fall Speed Round Problem 89
- 13. 2013 Berkeley Math Tournament Fall Speed Round Problem 90
- 14. 2015 Berkeley Math Tournament Spring Individual Round Problem 11
- 15. 2014 Berkeley Math Tournament Spring Analysis Round Problem 4