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1 Answers

1. 3

2. 495

3. 4028

4. 150

5. 720

6. 16

7.
21

4

8. 2 ln 2− 1

9. 125

10. 9

11. 7

12. 650

13. 51

14. 605

15. 3640

2 Solutions

1. Let S(n) denote the sum of the digits of the integer n. If S(n) = 2018, what is the smallest
possible value S(n + 1) can be?

Solution: Recalling that the sum of the digits of n S(n) ≡ n (mod 9), we know that S(n + 1) ≡
S(n)+1 ≡ 2019 ≡ 3 (mod 9). Therefore, S(n+1) ≥ 3. This can be achieved when n = 3∗10224−1.
Therefore, the smallest possible value of S(n + 1) is 3 .

2. One of the six digits in the expression 435 · 605 can be changed so that the product is a perfect
square N2. Compute N .

Solution: Notice that exactly one of the terms in this expansion is a factor of N2. 435 = 31 ·51 ·291.
605 = 51 · 112. Clearly 435 must be the term we need to change, as otherwise we would need the
other term to be 435 multiplied by a perfect square, which is impossible. Therefore, we need to
change a digit of 435 so we get 51 multipied by a perfect square. This can easily be achieved if we
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change 435 to 405 = 51 · 34. Therefore, N =
√

51 · 112 · 51 · 34 = 32 · 51 · 111 = 495 .

3. A sequence is defined as follows. Given a term an, we define the next term an+1 as

an+1 =

{
an
2 if an is even

an − 1 if an is odd

The sequence terminates when an = 1. Let P (x) be the number of terms in such a sequence with
initial term x. For example, P (7) = 5 because its corresponding sequence is 7, 6, 3, 2, 1. Evaluate
P (22018 − 2018).

Solution: Through brute force, we can find that if a1 = 22018 − 2018, then a16 = 22007 − 1. Now
from here we can notice that if a2n = 2x− 1, then a2n+1 = 2x− 2 and a2n+2 = 2x−1− 1. Therefore
for n ≥ 8, a2n = 22015−n−1 for many terms. It follows that a4026 = 22−1 = 3. Therefore, a4027 = 2
and a4028 = 1. It follows that our answer is 4028 .

4. Elizabeth is at a candy store buying jelly beans. Elizabeth begins with 0 jellybeans. With
each scoop, she can increase her jellybean count to the next largest multiple of 30, 70, or 110. (For
example, her next scoop after 70 can increase her jellybean count to 90, 110, or 140). What is the
smallest number of jellybeans Elizabeth can collect in more than 100 different ways?

Solution: Notice that the answer has to be a multiple of 30, 70, or 110. Let the answer be a, and
let the number of positive multiples of 30, 70, or 110 that are less than or equal to a be n. Notice
that the total number of ways to collect a jelly beans is 2n−1, as each of the first n−1 multiples can
either be ”visited” or not ”visited”, where we define a multiple to be ”visited” if and only if it is
the total number of jelly beans collected after some scoop in the collection process. It follows that
we want to find the 8th positive integer which is a multiple of at least one of 30, 70, or 110. Listing
these numbers, we get the list 30, 60, 70, 90, 110, 120, 140, 150. Therefore, our answer is 150 .

5. Positive integer n can be written in the form a2 − b2 for at least 12 pairs of positive integers
(a, b). Compute the smallest possible value of n.

Solution: Notice that n = (a − b)(a + b) and a − b and a + b have the same parity. Therefore,
either n is divisible by 4 or n is odd. If n were divisible by 4, then if n had x even divisors of the
form 2a such that n

2a is an even integer, then there would be dx2 e pairs (a, b) which would work.
However, if n is odd, then if n has x odd factors, there would be bx2 c pairs (a, b) which would work.
Clearly we can make n smaller by making n even, as powers of 2 grow much less quickly than other
prime powers. If we let n = 2a · b where b has x factors, then the number of pairs which work is
bax−x2 c. Therefore, we wish to find the smallest value of n of this form such that ax − x ≥ 24.
Because 24 has lots of small factors, it seems n will be minimized when ax − x = 24. If a = 7,
then we can let b = 15 for the value n = 27 · 31 · 51. If a = 5, then we can let b = 45 for the value
n = 24 · 32 · 51. Through brute force, we can find that this value does minimize n, and therefore
our answer is 24 · 32 · 51 = 720 .

6. Let

S =

2018102∑
k=1

1008∑
n=1

nk.

Compute the remainder when S is divided by 1009.

Solution: We will begin by proving that whenever p is prime and k is a positive integer, we have
that

p−1∑
n=1

nk ≡ p− 1 (mod p)
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when p− 1 | k, and otherwise we have

p−1∑
n=1

nk ≡ 0 (mod p).

First consider if p − 1 | k. By Fermat’s Little Theorem, we know that np−1 ≡ 1 (mod p), and it
follows that nk ≡ 1 (mod p). Therefore, the sum is

p−1∑
n=1

nk ≡
p−1∑
n=1

1 ≡ p− 1 (mod p)

Now consider when p − 1 - k. It is well known that when p is prime, there exists a primitive root
r (mod p) such that rp−1 ≡ 1 (mod p) and for 1 ≤ n ≤ p − 1, rn 6≡ 1 (mod p). It follows by the
Pigeonhole Principle that for 1 ≤ n ≤ p − 1, there exists exactly one integer 0 ≤ i < p − 1 such
that ri ≡ n (mod p). It follows that we can rewrite this sum as

p−1∑
n=1

nk ≡
p−1∑
i=1

rki (mod p)

Now let this simplifed version of the sum be O. Then we know that

O·(1−rk) ≡
p−1∑
i=1

rki−rki+k ≡ rk−r2k+r2k−r3k+· · ·+rpk−k−pk ≡ rk−rpk ≡ rk·(1−r(p−1)k) ≡ rk·(1−1k) ≡ 0 (mod p)

In other words, O · (1 − rk) ≡ 0 (mod p). By definition, because p − 1 - k, we know 1 − rk 6≡ 0
(mod p). It follows that O ≡ 0 (mod p), and therefore, we must have

O ≡
p−1∑
n=1

nk ≡ 0 (mod p)

It follows because p = 1009 is prime that the given sum is equivalent to

S ≡
b 2018102

1008
c∑

k=1

1008k∑
n=1

nk ≡ −b2018102

1008
c ≡ 16 (mod 1009)

7. Let f(k) be a function defined by the following rules:

(a) f(k) is multiplicative. In other words, if gcd(a, b) = 1, then f(ab) = f(a) · f(b),
(b) f(pk) = k for primes p = 2, 3 and all k > 0,
(c) f(pk) = 0 for primes p > 3 and all k > 0, and
(d) f(1) = 1.

For example, f(12) = 2 and f(160) = 0. Evaluate

∞∑
k=1

f(k)

k
.

Solution: Under the given conditions, we know that f(2a · 3b) = ab for positive integers a and
b, f(2a) = a for positive integers a, f(3b) = b for positive integers b, f(1) = 1, and f(n) = 0 for
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all numbers n not of one of the above forms. Under these conditions, we can find that we wish to
calculate

∞∑
k=1

f(k)

k
= 1 +

∞∑
a=1

a

2a
+
∞∑
b=1

b

3b
+
∞∑
a=1

∞∑
b=1

ab

2a · 3b
.

Notice that
∑∞

a=1
a
2a = (12 + 1

4 + 1
8 +· · ·)+(14 + 1

8 + 1
16 +· · ·)+(18 + 1

16 + 1
32 +· · ·)+· · ·. By the formula

for an infinite geometric series, we know this is 1 + 1
2 + 1

4 + 1
8 +· · · = 2. Using similar reasoning we

can find that
∑∞

b=1
b
3b

= 1
2 + 1

6 + 1
18 +· · · = 3

4 . Now for the fourth term in our total sum, we can
rewrite the sum as

∞∑
a=1

∞∑
b=1

ab

2a · 3b
=

∞∑
a=1

a

2a
·
∞∑
b=1

b

3b
= 2 · 3

4
=

3

2

Therefore our answer is 1 + 2 + 3
4 + 3

2 =
21

4
.

8. Consider all increasing arithmetic progressions of the form 1
a ,

1
b ,

1
c such that a, b, c ∈ N and

gcd(a, b, c) = 1. Find the sum of all possible values of 1
a .

Solution: Let the common difference of this arithmetic series be d for some rational number d.
It follows that we can rewrite this sequence as 1

b = 1+da
a and 1

c = 1+2da
a . Because we need the

simplified version of 1+da
a to have a numerator of 1, we must have that 1+da | a, or in other words,

we must have that a
1+da is an integer. Similarly, we must have that a

1+2da is an integer. It follows
that we can write a = r(1 + da)(1 + 2da) for some rational number r. However, if r were not equal
to 1, then we would either have that gcd(a, b, c) 6= 1 or we would have that at least one of a, b, and
c would not be an integer. Therefore, we must have a = (1 + da)(1 + 2da). From this it follows
that da is an integer because we can rewrite 1

c = 1+2da
a = 1

1+da . Therefore, if we let da = y, then
we know that a = (1 + y)(1 + 2y) for some integer y. It follows that the general solution for this
type of arithmetic progression is the sequence

1

(1 + y)(1 + 2y)
,

1

1 + 2y
,

1

1 + y

for some integer y ≥ 1. We can easily check that this will work for any integer y ≥ 1, so it follows
that we wish to compute

∞∑
y=1

1

(1 + y)(1 + 2y)
=
∞∑
y=1

2

1 + 2y
− 1

1 + y
=
∞∑
y=1

2

1 + 2y
− 2

2 + 2y

This sum rearranges to 2 · (13 −
1
4 + 1

5 −
1
6 +· · ·). It is well known that ln 2 = 1− 1

2 + 1
3 −

1
4 +· · ·, so

it follows that our answer is 2 · (ln 2− 1 + 1
2) = 2 ln 2− 1

9. How many ways are there to select distinct integers x, y where 1 ≤ x ≤ 25 and 1 ≤ y ≤ 25, such
that x + y is divisible by 5?

Solution: Notice that regardless of what the value of x is, there are always exactly 5 values of y
in this range which satisfy x + y is divisible by 25. It follows that our answer is 25 · 5 = 125 .

10. How many integer pairs (a, b) satisfy 1
a + 1

b = 1
2018?

Solution: Simplifying this equation, we get ab = 2018a+2018b. Using Simon’s Favorite Factoring
Trick (SFFT), we can rearrange this as (a−2018)(b−2018) = 20182. From here it follows that any
positive integer factor pair of 20182 corresponds to a unique pair (a, b) which satisfies the original
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equation. It follows that our answer is the number of factors of 20182 = 22 · 10092. It follows that
our answer is (2 + 1)2 = 9 .

11. Positive integer n has the property such that n− 64 is a positive perfect cube. Suppose that
n is divisible by 37. What is the smallest possible value of n?

Solution: Let n− 64 = x3. It follows that x3 + 43 = n, or (x+ 4)(x2− 4x+ 16) = n. The smallest
value of x which satisfies x + 4 ≡ 0 (mod 37) is x = 33. The smallest value of x which satisfies
x2 − 4x + 16 ≡ 0 (mod 37) is x = 7, as x3 must be positive. Therefore our answer is 7 .

12. Stu is on a train en route to SMT. He is bored, so he starts doodling in his notebook. Stu
realizes that he can combine SMT as an alphametic, where each letter represents a unique integer
and the leading digits may not be zero, to get his name as shown:

√
SMT + SMT = STU . Find

the three digit number STU .

Solution: Notice that by the given equation, we must have SMT is a 3-digit perfect square. Also,
due to the fact that

√
SMT <

√
1000, or

√
SMT ≤ 31, we know that T ≤ M + 4. Using this

knowledge, we can easily brute force this question by looking at all 3-digit perfect squares which
satisfy this property. Doing so gives us that if SMT = 625, then 625 +

√
625 = 650, and therefore

all properties are satisfied. It follows that our answer is 650 .

13. A 3 × 3 magic square is a grid of distinct numbers whose rows, columns, and diagonals all
add to the same integer sum. Connie creates a magic square whose sum is N , but her keyboard
is broken so that when she types a number, one of the digits (0− 9) always appears as a different
digit (e.g. if the digit 8 always appears as 5, the number 18 will appear as 15). The altered square
is shown below. Find N .

9 11 10

18 17 6

14 11 15

Solution: Note that the row, column, and diagonal totals of the given square are 30, 41, 40, 41, 39, 31, 41,
and 41. Given the wide variety between a few of these totals, it is safe to say that at least some of
the tens-digits are not actually 1s. Based on the small difference in the units digits of these totals,
it makes sense that the digit that is being changed is 1 away from the digit that it is changed to.
As a result, we can easily assume that her keyboard changes a 2 to a 1. From here, we can find
through brute force that the following magic square could have produced this square:

9 22 20

28 17 6

14 12 25

As a result, our answer is 9 + 22 + 20 = 51 .

14. Positive integer n has 6 factors including n and 1. Suppose that the third largest factor of n,
including n, is 55. Compute n.

Solution: Notice that if n has 6 factors, then either n = p5 for some prime p or n = p2 · q1 for two
distinct primes p and q. Because 55 = 51 · 111 is a factor of n, we know that n = p2 · q1 where (p, q)
is a rearrangement of (5, 11). Testing, we find that 55 is the third smallest factor of 51 ·112 = 605 .

15. How many 5 digit numbers n exist such that each n is divisible by 9 and none of the digits of
n are divisible by 9?
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Solution: We wish to find the number of solutions to a + b + c + d + e ≡ 0 (mod 9) where each
of a, b, c, d, e is among the set {1, 2, 3, 4, 5, 6, 7, 8}. Notice that for every choice of the digits a, b, c, d
such that a+b+c+d is not divisible by 9, there is exactly one value of e which will make the 5-tuple
satisfy this property. Therefore, if we let F4 be the number of 4-digit numbers with this property,
then our answer is 84 − F4. In general, if we let Fn be the number of n-digit numbers with this
property, then for n ≥ 2, we have Fn = 8n−1−Fn−1. We can easily find that F1 = 0, and using our
recursion, we can find that F2 = 8, F3 = 56, F4 = 456, and F5 = 84 − 456 = 4096− 456 = 3640 .

3 Sources

1. 2018 Stanford Math Tournament Discrete Problem 2
2. 2018 Stanford Math Tournament Discrete Problem 4
3. 2018 Stanford Math Tournament Discrete Problem 5
4. 2018 Stanford Math Tournament Discrete Problem 6
5. 2018 Stanford Math Tournament Discrete Problem 8
6. 2018 Stanford Math Tournament Discrete Problem 9
7. 2018 Stanford Math Tournament Team Problem 11
8. 2018 Stanford Math Tournament Team Problem 12
9. 2018 Stanford Math Tournament General Problem 15
10. 2018 Stanford Math Tournament General Problem 18
11. 2018 Stanford Math Tournament General Problem 21
12. 2018 Stanford Math Tournament General Problem 24
13. 2018 Stanford Math Tournament General Problem 19
14. 2018 Stanford Math Tournament Discrete Tiebreaker Problem 1
15. 2018 Stanford Math Tournament Discrete Tiebreaker Problem 2
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