Number Theory Handout \#8 Answers and Solutions

Walker Kroubalkian

May 8, 2018

1 Answers

1. 5
2. 709
3. 12
4. 120
5. 10613
6. 52
7. 859
8. 1010527
9. 343
10. 0
11. $\frac{18}{49}$
12. -2013
13. 4
14. 5
15. 991

2 Solutions

1. When the integer $(\sqrt{3}+5)^{103}-(\sqrt{3}-5)^{103}$ is divided by 9 , what is the remainder?

Solution: Notice that the given expression can be written as $2 \cdot \sum_{n=0}^{51} 3^{n} 5^{103-2 n}$. The remainder when this sum is divided by 9 is the same as the remainder when $2 \cdot 3 \cdot 5^{101}+2 \cdot 5^{103}$ is divided by 9 . By Euler's Totient Theorem, we know that $5^{103} \equiv 5^{1} \cdot 5^{6 \cdot 17} \equiv 5^{1} \cdot 1 \equiv 5(\bmod 9)$. Through brute force, we can find that $5^{101} \equiv 5^{5} \equiv 2(\bmod 9)$. It follows that the given sum is equivalent to $2 \cdot 3 \cdot 2+2 \cdot 1 \equiv 5(\bmod 9)$. It follows that our answer is 5 .
2. The value of 21 ! is $51,090,942,171, a b c, 440,000$ where a, b, and c are digits. What is the value of $100 a+10 b+c$?
Solution: Notice that 21 ! is divisible by each of 7,11 , and 13 , and thus it is divisible by 1001 . Therefore, the expression $0-440+\overline{a b c}-171+942-90+51$ must be divisible by 1001. It follows that $292+\overline{a b c}$ is divisible by 1001, and thus $\overline{a b c}=709$.
3. Find the smallest two-digit positive integer that is a divisor of 201020112012.

Solution: Clearly the given number is not divisible by 10 . Using the divisibility rule for 11, we can find that 201020112012 leaves a remainder of $2-1+0-2+1-1+0-2+0-1+0-2 \equiv 5$ (mod 11). Thus, the number is not divisible by 11 . We can quickly find that the number is divisible by 3 by adding its digits, and we can find that the number is divisible by 4 by observing that its last two digits, 12 , are divisible by 4 . Thus, our answer is $3 \cdot 4=12$.
4. When Meena turned 16 years old, her parents gave her a cake with n candles, where n has exactly 16 different positive integer divisors. What is the smallest possible value of n ?

Solution: Notice that a number will only have exactly 16 positive integer factors if it is of one of the forms $p q r s, p^{3} q r, p^{3} q^{3}, p^{7} q$, or p^{15}. The smallest number of the form pqrs is $2 \cdot 3 \cdot 5 \cdot 7=210$. The smallest number of the form $p^{3} q r$ is $2^{3} \cdot 3 \cdot 5=120$. The smallest number of the form $p^{3} q^{3}$ is $2^{3} \cdot 3^{3}=216$. Thus, our answer is 120 .
5. The number $104,060,465$ is divisible by a five-digit prime number. What is that prime number?

Solution: We can notice that the given number is equivalent to $101^{4}+4 \cdot 2^{4}$. By the Sophie-Germain Factorization, it follows that the number can be factored as $\left(8+101^{2}-404\right)\left(8+101^{2}+404\right)=$ $9805 \cdot 10613$. It follows that our answer is 10613 .
6. Let N be the number of ordered pairs of integers (x, y) such that

$$
4 x^{2}+9 y^{2} \leq 1000000000
$$

Let a be the first digit of N (from the left) and let b be the second digit of N. What is the value of $10 a+b$?
Solution: We can notice that for large areas, the number of lattice points inside the area is roughly the same as the area itself. The area of this ellipse is $\frac{\sqrt{1000000000}}{3} \cdot \frac{\sqrt{1000000000}}{2} \cdot \pi=$ $\frac{1000000000 \pi}{6}$. We can find that this is roughly 523000000 . Therefore, we can reasonably say that $10 a+b$ is 52 .
7. The polynomial P is a quadratic with integer coefficients. For every positive integer n, the integers $P(n)$ and $P(P(n))$ are relatively prime to n. If $P(3)=89$, what is the value of $P(10)$?

Solution: Notice that if the constant term of the polynomial were divisible by any positive integer other than 1 , then it would be impossible for the condition to be satisfied. Thus, the constant term is either 1 or -1 . For our first case, assume the constant term is 1 . If we let the quadratic be $P(n)=a n^{2}+b n+1$, then $P(P(n))$ has a constant term of $a+b+1$. Thus, for the same reason as above, we must have either $a+b=0$ or $a+b=-2$. We know that $9 a+3 b+1=3(3 a+b)+1=89$. This is clearly impossible, as $89-1=88$ is not divisible by 3 . Now assume the constant term is -1 . Then the constant term of $P(P(n))$ is $a-b-1$. It follows that either $a-b=0$ or $a-b=2$. We know that $9 a+3 b-1=89$, or $3 a+b=30$. If $a-b$ were 0 , it would follow that $4 a=30$ which is impossible. Thus, $a-b=2$, and $4 a=32$. It follows that $a=8$ and $b=6$, and our polynomial is $P(n)=8 n^{2}+6 n-1$. Thus, $P(10)=800+60-1=859$.
8. What is the least positive integer n such that n ! is a multiple of 2012^{2012} ?

Solution: Notice that $2012^{2012}=2^{4024} \cdot 5^{2012}$. Thus, we wish to find the smallest value of n such that $n!$ is a multiple of 503^{2012}. We can notice that $n=503 \cdot 2012$ satisfies the property that n ! is divisible by $503^{2012+4}=503^{2016}$. It follows that our answer is $n=503 \cdot(2012-3)=503 \cdot 2009=$ 1010527
9. For how many ordered pairs of positive integers (x, y) is the least common multiple of x and y equal to $1,003,003,001$?

Solution: Notice that $1003003001=7^{3} \cdot 11^{3} \cdot 13^{3}$. For each prime power in this product, we have $2 \cdot 3+1=7$ possible ways to divide the factors of the corresponding prime to each number in the pair (x, y). Thus, our answer is $7^{3}=343$.
10. When the binomial coefficient $\binom{125}{64}$ is written out in base 10 , how many zeros are at the rightmost end?
Solution: By Legendre's Formula, 125 ! is divisible by 5^{31} and 2^{119}. Similarly, 64 ! is divisible by 5^{14} and 2^{63}. Similarly, 61 ! is divisible by 5^{14} and 2^{56}. It follows that $\binom{125}{64}$ is divisible by $5^{31-14-14}=5^{3}$ and $2^{119-63-56}=2^{0}$. Thus, there are 0 zeroes at the end of $\binom{125}{64}$.
11. If n is a positive integer, let $\phi(n)$ be the number of positive integers less than or equal to n that are relatively prime to n. Compute the value of the infinite sum

$$
\sum_{n=1}^{\infty} \frac{\phi(n) 2^{n}}{9^{n}-2^{n}} .
$$

Express your answer as a fraction in simplest form.
Solution: Notice that if $x=\frac{2}{9}$, then the given sum is equivalent to

$$
\sum_{n=1}^{\infty} \frac{\phi(n) x^{n}}{1-x^{n}}=\sum_{n=1}^{\infty} \phi(n)\left(\sum_{k=1}^{\infty} x^{k n}\right)=\sum_{n=1}^{\infty}\left(\sum_{k=1, n \mid k}^{\infty} x^{k} \phi(n)\right)=\sum_{k=1}^{\infty} x^{k}\left(\sum_{n=1, n \mid k}^{\infty} \phi(n)\right)
$$

It is well known that the sum $\sum_{n \mid k} \phi(n)=k$. It follows that our sum is now equivalent to

$$
\sum_{k=1}^{\infty} k x^{k}=\frac{x}{1-x}+\frac{x^{2}}{1-x}+\frac{x^{3}}{1-x}=\frac{x}{(1-x)^{2}}
$$

It follows that the value of our sum is $\frac{\frac{2}{9}}{\left(\frac{7}{9}\right)^{2}}=\frac{18}{49}$.
12. Say that an integer A is yummy if there exist several consecutive integers (including A) that add up to 2014. What is the smallest yummy integer?
Solution: Consider a set of n consecutive integers that add up to 2014. If the average of these integers is a, then we have that $n a=2014$. Because this is a set of consecutive integers, we must have that a is a positive integer multiple of $\frac{1}{2}$. It follows that n is maximized when $a=\frac{1}{2}$. In this case, we would have 4028 consecutive positive integers with an average of 0.5 . This set would consist of all integers from -2013 to 2014. It follows that -2013 is the smallest yummy integer.
13. Say that an integer $n \geq 2$ is delicious if there exist n positive integers adding up to 2014 that have distinct remainders when divided by n. What is the smallest delicious integer?
Solution: If the remainders of these n integers are added up, then we would get $\frac{n(n-1)}{2}$. We can notice that this is divisible by n when n is odd, and when $n=2 x$, this is equivalent to $x(\bmod x)$. It follows that the smallest odd yummy integer is 19 and the smallest even yummy integer is 4 .
14. There are N students in a class. Each possible nonempty group of students selected a positive integer. All of these integers are distinct and add up to 2014. Compute the greatest possible value of N.

Solution: Notice that there are $2^{N}-1$ distinct nonempty groups of students. The sum of these $2^{N}-1=a-1$ distinct positive integers is at very least $\frac{a(a-1)}{2}$. It follows that the smallest possible value of a is $a=32$, as any larger power of 2 will lead to a sum which is greater than 2014. It follows that the greatest possible value of N is $N=5$.
15. For how many integers k such that $0 \leq k \leq 2014$ is it true that the binomial coefficient $\binom{2014}{k}$ is a multiple of 4 ?
Solution: By Kummer's Theorem, the exponent of the largest power of 2 which divides $\binom{2014}{k}$ is equivalent to the number of carries when k is added to $2014-k$ in base 2 . The binary representation of 2014 is 11111011110_{2}. If the number of carries in this sum is 0 , the 2^{0} and 2^{5} digits in k must both be 0 , but the other 9 digits can be arbitrary. It follows that there are $2^{9}=512$ values of k such that $\binom{2014}{k}$ is odd. In order for there to be 1 carry in this sum, Either k must have a 2^{0} digit of 1 and a 2^{1} digit of 0 as well as a 2^{5} digit of 0 or k must have a 2^{0} digit of 0 and a 2^{5} digit of 1 as well as a 2^{6} digit of 0 . In this case, there are $2 \cdot 2^{8}=512$ additional values of k which make 2 the largest power of 2 which divides $\binom{2014}{k}$. It follows that there are $2014+1-1024=991$ values of k such that $\binom{2014}{k}$ is divisible by 4 .

3 Sources

1. Math Prize For Girls 2009 Problem 9
2. Math Prize For Girls 2009 Problem 18
3. Math Prize For Girls 2010 Problem 5
4. Math Prize For Girls 2010 Problem 8
5. Math Prize For Girls 2011 Problem 13
6. Math Prize For Girls 2011 Problem 16
7. Math Prize For Girls 2011 Problem 18
8. Math Prize For Girls 2012 Problem 3
9. Math Prize For Girls 2012 Problem 6
10. Math Prize For Girls 2013 Problem 2
11. Math Prize For Girls 2013 Problem 19
12. Math Prize For Girls 2014 Problem 4
13. Math Prize For Girls 2014 Problem 5
14. Math Prize For Girls 2014 Problem 6
15. Math Prize For Girls 2014 Problem 18
