Number Bases Handout Answers and Solutions

Walker Kroubalkian

January 23, 2018

1 Answers

1. 13
2. 13121_{4} or 13121
3. 4095
4. 14_{6} or 14
5. 661_{10} or 661
6. 2114_{5} or 2114
7. 13
8. $\frac{13}{4}$
9. 11358 or 1135
10. 11
11. $\frac{16_{b}}{37_{b}}$
12. 7 or 7_{10}
13. 240_{10} or 240
14. 3
15. 13

2 Solutions

1. In base 10 , the number 2013 ends in the digit 3 . In base 9 , on the other hand, the same number is written as $(2676)_{9}$ and ends in the digit 6 . For how many positive integers b does the base-b-representation of 2013 end in the digit 3?

Solution: Notice that when a number is expressed in base b, its last digit is the same as the remainder when the number is divided by b. It follows that if $2013_{10}=\ldots 3_{b}$, then $2013=a b+3$ for some integer a. It follows that b is a factor of 2010 which is greater than 3 . The prime factorization of 2010 is $2010=2^{1} \cdot 3^{1} \cdot 5^{1} \cdot 67^{1}$. It follows tht the number of factors of 2010 is $2^{4}=16$, and therefore the number of bases b which work is $16-3=13$.
2. Convert 731_{8} to a base- 4 number.

Solution: We will begin by converting 731_{8} to binary, and then we will convert the result to base
4. Letting each original digit represent three digits of the binary result, we get the binary form 111011001_{2}. Now, letting each base 4 digit represent 2 binary digits, we get the final base 4 result of 13121_{4}.
3. What is the largest base 10 number that can be expressed in 3 digits of base 16 ?

Solution: Notice that the smallest 4-digit number in base 16 is $1000_{16}=16^{3}$. It follows that the largest base 10 number which can be expressed with 3 base 16 digits is $16^{3}-1=4095$.
4. What is the base 6 representation of the base 10 number 10 ?

Solution: By simple base conversion, we can rewrite $10_{10}=6_{10}+4_{10}=10_{6}+4_{6}=14_{6}$.
5. What is the base 8 number 1225 in base 10 ?

Solution: We can rewrite the number as $1225_{8}=1000_{8}+200_{8}+20_{8}+5_{8}=8^{3}+2 \cdot 8^{2}+2 \cdot 8^{1}+5=$ 661_{10}.
6. Evaluate $11_{2}+111_{3}+1111_{4}$ and express as a base 5 number.

Solution: We will begin by converting each number to base 10 . This can be simplified by rewriting the result as $11_{2}+111_{3}+1111_{4}=100_{2}+1000_{3}+10000_{4}-3=2^{2}+3^{3}+4^{4}-3=284_{10}$. Then we can rewrite this result as $284_{10}=2 \cdot 5^{3}+5^{2}+5^{1}+4=2114_{5}$.
7. In what base b with $b>7$, is 3 times 7 equal to 18 ?

Solution: We will convert all numbers to base 10 . This gives us the equation $3 \cdot 7=b+8$. Solving, we get $b=13$.
8. When 2017 (in base 10) is expressed in base 7, what is the base- 10 average of those base- 7 digits?

Solution: We can rewrite 2017 as $2017_{10}=5 \cdot 7^{3}+6 \cdot 7^{2}+7^{1}+1=5611_{7}$. The sum of these base 7 digits is $5+6+1+1=13_{10}$, and the base-10 average of these digits is $\frac{13}{4}$.
9. N is the smallest positive integer for which $275 \cdot N$ (base 10) is a perfect cube. Write N in octal.

Solution: The prime factorization of 275 is $275=5^{2} \cdot 11^{1}$. It follows that the smallest value of N such that $275 N$ is a perfect cube is $N=5^{1} \cdot 11^{2}=605$. It follows that N can be rewritten as $N=605=8^{3}+8^{2}+3 \cdot 8^{1}+5=1135_{8}$.
10. Let A, B, C be digits, $x_{10}=A B C_{4}$, and $y_{10}=A B C_{6}$. If $y=2 x$, and the sum of all possible values of x is z, find the sum of the digits of z.

Solution: Converting everything to base 10 , we get $x=16 A+4 B+C$ and $y=36 A+6 B+C$. It follows that $32 A+8 B+2 C=36 A+6 B+C$, or $2 B+C=4 A$. Because $A, B, C<4$, the only triples (A, B, C) which work are $(A, B, C)=(1,2,0),(1,1,2)$, and $(2,3,2)$. These correspond to x-values of 24,22 , and 46 , respectively. It follows that $z=24+22+46=92$, and the sum of the digits of z is 11 .
11. The fraction $\frac{103_{b}}{136_{b}}$ can be reduced to $\frac{14_{b}}{18_{b}}$ (which is simplest since it is irreducible in base 10). What is the simplest form of the fraction $\frac{149_{b}}{338_{b}}$, written as a quotient of integers, each in base b ?
Solution: Notice that the given statement is equivalent to $33_{b} \cdot 18_{b}=4 b \cdot 136_{b}$. Converting everything to base b, we get $(3 b+3)(b+8)=4 b^{2}+12 b+24$. Simplifying, we get $b^{2}-15 b=0$, or $b=15$. It follows that $149_{b}=149_{15}=225+60+9=294$, and $338_{b}=338_{15}=675+45+8=728$.

It follows that the simplest form of the fraction is $\frac{21}{52}$ in base 10 , and converting this to base $b=15$, we get the fraction $\frac{16_{b}}{37_{b}}$.
12. When the decimal number 271 is converted to base 4 , what is the sum of the digits of the base four number, expressed in base ten?
Solution: We can rewrite $271=4^{4}+3 \cdot 4+3=10033_{4}$. It follows that the sum of the digits of this base four number is $1+3+3=7$.
13. In base eleven, the letter A is the symbol for 10 . What is $1 A 9_{11}$ expressed in base ten?

Solution: We can rewrite this as $1 A 9_{11}=11^{2}+10 \cdot 11^{1}+9=240_{10}$.
14. The number A, when expressed in base 7 , is $0.222 \ldots 7$. When expressed in base $10, A$ can be written as $0 . p p p \ldots 10$. What is the value of p ?
Solution: We can remember that $0 . \bar{x}_{b}$ is equivalent to $\frac{x}{b-1}$. It follows that the given expression is $\frac{2}{6}=\frac{1}{3}$, and therefore $p=3$.
15. The four digit number $X 45 Y_{12}$ is divisible by 143_{10}. Evaluate $X+Y$ in base 10 .

Solution: Remembering that a base n number will only be divisible by $n-1$ if the sum of its digits is divisible by $n-1$, and that 143 is divisible by $12-1=11$, We know that $X+Y+9$ has to be divisible by 11. It follows that either $X+Y=13$ or $X+Y=2$ as $X, Y<12$. Similarly, we know that a base n number will only be divisible by $n+1$ if the alternating sum of its digits is divisible by $n+1$. It follows that $X-Y+1$ is divisible by 13 . Notice that if $X+Y=2$, we must either have $(X, Y)=(2,0)$ or $(X, Y)=(1,1)$. Because neither of these pairs satisfy $X-Y+1$ is divisible by 13 , we must have $(X, Y)=(6,7)$ and $X+Y=13$.

3 Sources

1. 2013 AMC 10A Problem 23
2. 2014-2015 Log1 Contest Theta Individual Problem 3
3. 2007-2008 Log1 Contest Theta Individual Problem 7
4. 2008-2009 Log1 Contest Theta Number Theory Problem 5
5. 2008-2009 Log1 Contest Theta Number Theory Problem 9
6. 2011-2012 Log1 Contest Theta Number Theory Problem 4
7. 2016-2017 National Mu Alpha Theta Open Number Theory Problem 1
8. 2016-2017 National Mu Alpha Theta Open Number Theory Problem 6
9. 2016-2017 National Mu Alpha Theta Open Number Theory Problem 15
10. 2015-2016 National Mu Alpha Theta Open Number Theory Problem 9
11. 2015-2016 National Mu Alpha Theta Open Number Theory Problem 14
12. 2014-2015 National Mu Alpha Theta Open Number Theory Problem 5
13. 2014-2015 National Mu Alpha Theta Open Number Theory Problem 8
14. 2014-2015 National Mu Alpha Theta Open Number Theory Problem 18
15. 2012-2013 National Mu Alpha Theta Open Number Theory Problem 22
