Geometry Handout 3

Walker Kroubalkian

November 7, 2017

1 Problems

1. Let triangle $\triangle A B C$ be an equilateral triangle with height 13 , and let O be its center. Point X is chosen at random from all points inside triangle $\triangle A B C$. Given that the circle of radius 1 centered at X lies entirely inside triangle $\triangle A B C$, what is the probability that the circle contains O ?

2. Triangle $\triangle A B C$ has $\overline{A B}=5, \overline{B C}=7$, and $\overline{C A}=8$. New lines not containing but parallel to $\overline{A B}, \overline{B C}$, and $\overline{C A}$ are drawn tangent to the incircle of $\triangle A B C$. What is the area of the hexagon formed by the sides of the original triangle and the newly drawn lines?

3. Two circles with radius one are drawn in the coordinate plane, one with center $(0,1)$ and the other with center $(2, y)$ for some real number y between 0 and 1 . A third circle is drawn so as to be tangent to both of the other two circles as well as the x-axis. What is the smallest possible radius for this third circle?

4. Let $\triangle A B C$ be a triangle, and let D, E, and F be the midpoints of sides $\overline{B C}, \overline{C A}$, and $\overline{A B}$, respectively. Let the angle bisectors of $\angle F D E$ and $\angle F B D$ meet at P. Given that $\angle B A C=37^{\circ}$ and $\angle C B A=85^{\circ}$, determine the degree measure of $\angle B P D$.

5. $A B C D$ is a rectangle with $\overline{A B}=20$ and $\overline{B C}=3$. A circle with radius 5 , centered at the midpoint of $\overline{D C}$, meets the rectangle at four points: W, X, Y, and Z. Find the area of quadrilateral $W X Y Z$.

6. $A B C D$ is a parallelogram satisfying $\overline{A B}=7, \overline{B C}=2$, and $\angle D A B=120^{\circ}$. Parallelogram $E C F A$ is contained in $A B C D$ and is similar to it. Find the ratio of the area of $E C F A$ to the area of $A B C D$.

7. Plot points A, B, C at coordinates $(0,0),(0,1)$, and $(1,1)$ in the plane, respectively. Let S denote the union of the two line segments $\overline{A B}$ and $\overline{B C}$. Let X_{1} be the area swept out when Bobby rotates S counterclockwise 45° about point A. Let X_{2} be the area swept out when Calvin rotates S clockwise 45° about point A. Find $\frac{X_{1}+X_{2}}{2}$.

8. Let $\triangle A B C$ be an isosceles triangle with $\overline{A B}=\overline{A C}$. Let D and E be the midpoints of segments $\overline{A B}$ and $\overline{A C}$, respectively. Suppose that there exists a point F on ray $\overrightarrow{D E}$ outside of $\triangle A B C$ such that triangle $\triangle B F A$ is similar to triangle $\triangle A B C$. Compute $\frac{A B}{B C}$.

9. Let $\triangle A B C$ be a triangle and D a point on $\overline{B C}$ such that $\overline{A B}=\sqrt{2}, \overline{A C}=\sqrt{3}, \angle B A D=30^{\circ}$, and $\angle C A D=45^{\circ}$. Find $\overline{A D}$.

10. Two circles ω and γ have radii 3 and 4 respectively, and their centers are 10 units apart. Let x be the shortest possible distance between a point on ω and a point on γ, and let y be the longest possible distance between a point on ω and a point on γ. Find the product $x y$.

11. Let $\triangle A B C$ be a triangle with $\angle B=90^{\circ}$. Given that there exists a point D on $\overline{A C}$ such that $\overline{A D}=\overline{D C}$ and $\overline{B D}=\overline{B C}$, compute the value of the ratio $\frac{A B}{B C}$.

12. In rectangle $A B C D$ with area 1 , point M is selected on $\overline{A B}$ and points X, Y are selected on $\overline{C D}$ such that $\overline{A X}<\overline{A Y}$. Suppose that $\overline{A M}=\overline{B M}$. Given that the area of triangle $\triangle M X Y$ is $\frac{1}{2014}$, compute the area of trapezoid $A X Y B$. (Note: This diagram is not drawn to scale.)

13. Let $\triangle A B C$ be a triangle with $\overline{A B}=5, \overline{A C}=4, \overline{B C}=6$. The angle bisector of C intersects side $\overline{A B}$ at X. Points M and N are drawn on sides $\overline{B C}$ and $\overline{A C}$, respectively, such that $\overline{X M} \| \overline{A C}$ and $\overline{X N} \| \overline{B C}$. Compute the length $\overline{M N}$.

14. Chords $\overline{A B}$ and $\overline{C D}$ of a circle are perpendicular and intersect at a point P. If $\overline{A P}=6$, $\overline{B P}=12$, and $\overline{C D}=22$, find the area of the circle.

15. Let $\triangle A B C$ be a right triangle with right angle $\angle C$. Let I be the incenter of $\triangle A B C$, and let M lie on $\overline{A C}$ and N on $\overline{B C}$, respectively, such that M, I, N are collinear and $\overline{M N}$ is parallel to $\overline{A B}$. If $\overline{A B}=36$ and the perimeter of $\triangle C M N$ is 48 , find the area of $\triangle A B C$.

2 Sources

1. 2009 November Harvard MIT Math Tournament General Problem 8
2. 2010 November Harvard MIT Math Tournament General Problem 3
3. 2010 November Harvard MIT Math Tournament General Problem 8
4. 2011 November Harvard MIT Math Tournament General Problem 2
5. 2012 November Harvard MIT Math Tournament General Problem 3
6. 2012 November Harvard MIT Math Tournament General Problem 6
7. 2013 November Harvard MIT Math Tournament General Problem 2
8. 2013 November Harvard MIT Math Tournament General Problem 5
9. 2013 November Harvard MIT Math Tournament General Problem 9
10. 2014 November Harvard MIT Math Tournament General Problem 1
11. 2014 November Harvard MIT Math Tournament General Problem 2
12. 2014 November Harvard MIT Math Tournament General Problem 4
13. 2014 November Harvard MIT Math Tournament General Problem 6
14. 2015 November Harvard MIT Math Tournament General Problem 4
15. 2015 November Harvard MIT Math Tournament General Problem 7
