Geometry Handout \#6

Walker Kroubalkian

March 13, 2018

1 Problems

1. A quadrilateral $A B C D$ has a right angle at $\angle A B C$ and satisfies $\overline{A B}=12, \overline{B C}=9, \overline{C D}=20$, and $\overline{D A}=25$. Determine $\overline{B D}^{2}$.

2. In $\triangle A B C, m \angle B=46^{\circ}$ and $m \angle C=48^{\circ}$. A circle is inscribed in $\triangle A B C$ and the points of tangency are connected to form $\triangle P Q R$. What is the measure of the largest angle in $\triangle P Q R$?

3. Let $\triangle A B C$ be a triangle. The angle bisectors of $\angle A B C$ and $\angle A C B$ intersect at D. If $\angle B A C=80^{\circ}$, what are all possible values for $\angle B D C$?

4. $A B C D E F$ is a regular hexagon. Let R be the overlap between $\triangle A C E$ and $\triangle B D F$. What is the area of R divided by the area of $A B C D E F$?

5. Let M be on segment $B C$ of $\triangle A B C$ so that $\overline{A M}=3, \overline{B M}=4$, and $\overline{C M}=5$. Find the largest possible area of $\triangle A B C$.

6. Let $A B C D$ be a rectangle. Circles C_{1} and C_{2} are externally tangent to each other. Furthermore, C_{1} is tangent to $\overline{A B}$ and $\overline{A D}$, and C_{2} is tangent to $\overline{C B}$ and $\overline{C D}$. If $\overline{A B}=18$ and $\overline{B C}=25$, then find the sum of the radii of the circles.

7. Let $A=(1,0), B=(0,1)$, and $C=(0,0)$. There are three distinct points, P, Q, R, such that $\{A, B, C, P\},\{A, B, C, Q\},\{A, B, C, R\}$ are all parallelograms (vertices unordered). Find the area of $\triangle P Q R$.

8. Triangle $\triangle A B C$ has side lengths $\overline{A B}=3, \overline{B C}=4$, and $\overline{C D}=5$. Draw line l_{A} such that l_{A} is parallel to $\overline{B C}$ and splits the triangle into two polygons of equal area. Define lines l_{B} and l_{C} analogously. The intersection points of l_{A}, l_{B}, and l_{C} form a triangle. Determine its area.

9. Suppose that two of the three sides of an acute triangle have lengths 20 and 16 , respectively. How many possible integer values are there for the length of the third side?

10. In the figure below, three semicircles are drawn outside the given right triangle. Given the areas $A_{1}=17$ and $A_{2}=14$, find the area A_{3}.

11. Consider a circle of radius 1 drawn tangent to the positive x and y axes. Now consider another smaller circle tangent to that circle and also tangent to the positive x and y axes. Find the radius of the smaller circle.

12. Suppose you have a triangle with side lengths 3,4 , and 5 . For each of the triangle's sides, draw a square on its outside. Connect the adjacent vertices in order, forming 3 new triangles (as in the diagram). What is the area of this convex region?

13. Let $\triangle A B C$ have side lengths 3,4 , and 5 . Let P be a point inside $\triangle A B C$. What is the minimum sum of the lengths of the altitudes from P to the side lengths of $\triangle A B C$?

14. Three circles of radius 1 are inscribed in a square of side length s such that the circles do not overlap or coincide with each other. What is the minimum s where such a configuration is possible?

15. Consider triangle $\triangle A B C$ in the $x y$-plane where A is at the origin, B lies on the positive x-axis, C is on the upper right quadrant, and $\angle A=30^{\circ}, \angle B=60^{\circ}$, and $\angle C=90^{\circ}$. Let the length $\overline{B C}=1$. Draw the angle bisector l of angle $\angle C$, and let this intersect the y-axis at D. What is the area of quadrilateral $A D B C$?

2 Sources

1. 2015 Berkeley Math Tournament Spring Individual Problem 3
2. 2015 Berkeley Math Tournament Spring Individual Problem 7
3. 2015 Berkeley Math Tournament Spring Geometry Problem 1
4. 2015 Berkeley Math Tournament Spring Geometry Problem 2
5. 2015 Berkeley Math Tournament Spring Geometry Problem 3
6. 2015 Berkeley Math Tournament Spring Geometry Problem 4
7. 2015 Berkeley Math Tournament Spring Geometry Problem 5
8. 2015 Berkeley Math Tournament Spring Team Problem 4
9. 2016 Berkeley Math Tournament Fall Individual Problem 12
10. 2016 Berkeley Math Tournament Fall Team Problem 11
11. 2016 Berkeley Math Tournament Fall Team Problem 12
12. 2016 Berkeley Math Tournament Fall Team Problem 19
13. 2016 Berkeley Math Tournament Spring Individual Problem 4
14. 2016 Berkeley Math Tournament Spring Individual Problem 14
15. 2016 Berkeley Math Tournament Spring Individual Problem 17
