Geometry Handout 1 Answers and Solutions
 Walker Kroubalkian
 September 19, 2017

1 Answers

1. $12 \sqrt{5}$
2. $\frac{3}{8}$ or 0.375
3. $\frac{25 \pi-50}{2}$ or $\frac{25 \pi}{2}-25$
4. $\sqrt{13}$
5. $2-\sqrt{3}$
6. $\frac{14}{5}$ or 2.8
7. $\frac{47}{7}$
8. $\frac{\pi-3 \sqrt{3}+3}{3}$ or $\frac{\pi}{3}+1-\sqrt{3}$ or equivalent values
9. $72 \sqrt{3}$
10. $\frac{3 \pi}{10}$
11. 252
12. $18 \sqrt{5}$
13. 13
14. 18
15. $\frac{180900}{1007}$

2 Solutions

1. A rhombus has area 36 and the longer diagonal is twice as long as the shorter diagonal. What is the perimeter of the rhombus?

Solution: Label the points of the rhombus as shown above. By the properties of a rhombus, we
have the diagonals $\overline{A C}$ and $\overline{B D}$ are perpendicular bisectors of each other. Let $\overline{A C}=2 x$ and let $\overline{B D}=x$. Then we have the area of the rhombus is $\frac{A C \times B D}{2}=x^{2}=36$. Thus, $x=\overline{B D}=6$. Then we have that $\overline{A E}=6$ and $\overline{B E}=3$. By the Pythagorean Theorem, we have $\overline{A B}=\sqrt{6^{2}+3^{2}}=3 \sqrt{5}$. Therefore, the perimeter of $A B C D$ is $4 \times 3 \sqrt{5}=12 \sqrt{5}$ as desired.
2. Given regular hexagon $A B C D E F$, compute the probability that a randomly chosen point inside the hexagon is inside triangle $P Q R$, where P is the midpoint of $\overline{A B}, Q$ is the midpoint of $\overline{C D}$, and R is the midpoint of $\overline{E F}$.

Extend lines $E F$ and $A B$ to intersect at N as shown above. Because $\angle E F A \cong \angle B A F=120^{\circ}$, we have $\angle N A F \cong \angle N F A=180-120=60^{\circ}$. Therefore, $\triangle N A F$ is an equilateral triangle, $\overline{N A} \cong \overline{N F}$, and $\angle A N F=60^{\circ}$. Because $\overline{P A} \cong \overline{R F}=\frac{\overline{A B}}{2}$ and $\overline{N A} \cong \overline{N F}$, we have $\overline{N R} \cong \overline{N P}=\overline{N A}+\overline{A P}=$ $\overline{N F}+\overline{F R}$. Because $\angle R N P=60^{\circ}$ and $\overline{N R}=\overline{N P}$, we have $\triangle P N R$ is also equilateral. Thus, if we let $\overline{A P}=x$, then we have $\overline{P R} \cong \overline{N P}=3 x$. The probability that a randomly chosen point will land in $\triangle P Q R$ is the same as the ratio of the area of $\triangle P Q R$ to the area of $A B C D E F$. The area of $\triangle P Q R$ is $\frac{s^{2} \sqrt{3}}{4}=\frac{(3 x)^{2} \sqrt{3}}{4}=\frac{9 x^{2} \sqrt{3}}{4}$ and the area of $A B C D E F$ is $\frac{3 s^{2} \sqrt{3}}{2}=\frac{3(2 x)^{2} \sqrt{3}}{2}=6 x^{2} \sqrt{3}$. Therefore our answer is $\frac{\frac{9 x^{2} \sqrt{3}}{4}}{6 x^{2} \sqrt{3}}=\frac{3}{8}=0.375$ as desired.
3. An isosceles right triangle is inscribed in a circle of radius 5 , thereby separating the circle into four regions. Compute the sum of the areas of the two smallest regions.

Solution: Label the diagram as shown above. By symmetry, we have that $\angle A D C=90^{\circ}$, where D is the center of the circle and the midpoint of the hypotenuse of the right isosceles triangle. We wish to find the sums of the areas of the two sectors from $\angle A D B$ and $\angle A D C$ which are not included in $\triangle A B C$. Therefore, our answer is $\frac{\pi r^{2}}{2}-\frac{b h}{2}=\frac{25 \pi}{2}-\frac{10 * 5}{2}=\frac{25 \pi-50}{2}=\frac{25 \pi}{2}-25$.
4. A triangle with side lengths 2 and 3 has an area of 3 . Compute the third side length of the triangle.

Solution: If the triangle has an area of 3 and a base of 3 , then by $A=\frac{b h}{2}$, we have that the height to the side of length 3 is 2 . Because this is equal to another side length of the triangle, we have that there must be a right angle between the side of length 2 and the side of length 3 . Thus, by the Pythagorean Theorem, the third side length is $\sqrt{2^{2}+3^{2}}=\sqrt{13}$.
5. Compute the square of the distance between the incenter (center of the inscribed circle) and circumcenter (center of the circumscribed circle) of a 30-60-90 triangle with hypotenuse of length 2.

Solution: Label the diagram as shown above. Because the triangle is a right triangle, we have that the center of the circumscribed circle (the circumcenter) is at the midpoint of the hypotenuse of the triangle. This is because if a circle was circumscribed about a right triangle, the $90^{\text {circ }}$ angle would subtend an arc of $2 * 90^{\text {circ }}=180^{\circ}$, therefore subtending half of the circle. It follows that the hypotenuse is a diameter, and therefore its midpoint is the circumcenter, or point D in our diagram. We will proceed with coordinates. Let A be at $(0,0)$ in the coordinate plane. By the nature of $30-60-90$ triangles, we have that $\frac{\overline{A C}}{\overline{B C}}=\frac{1}{2}$, meaning $\overline{A C}=2 \times \frac{1}{2}=1$. Therefore, we will let C be at point $(0,1)$ in the coordinate plane. Similarly, $\frac{\overline{A B}}{\overline{B C}}=\frac{\sqrt{3}}{2}$. Therefore, $\overline{A B}=2 \times \frac{\sqrt{3}}{2}=\sqrt{3}$. Therefore, we will let B be at point $(\sqrt{3}, 0)$ in the coordinate plane. Because D is at the midpoint of $\overline{B C}$, we have that the circumcenter D is at $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ in the coordinate plane. Now, if we let the radius of the inscribed circle be r, and the center of the inscribed circle be I, then by area we have tha $|\triangle A B C|=|\triangle A B I|+|\triangle B C I|+|\triangle A C I|$ where $|\triangle A B C|$ represents the area of $\triangle A B C$ and so on. By $A=\frac{b h}{2}$, we have $\frac{\sqrt{3}}{2}=\frac{r}{2} \times(1+\sqrt{3}+2)$. Solving this equation we get $r=\frac{\sqrt{3}-1}{2}$. We have that I is at $\left(\frac{\sqrt{3}-1}{2}, \frac{\sqrt{3}-1}{2}\right)$ in the coordinate plane. Thus, we wish to calculate the square of the distance between $\left(\frac{\sqrt{3}-1}{2}, \frac{\sqrt{3}-1}{2}\right)$ and $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$. By the distance formula, we get that this is equal to $\left(\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}-2}{2}\right)^{2}=2-\sqrt{3}$
6. Points A, B, and C lie on a circle of radius 5 such that $\overline{A B}=6$ and $\overline{A C}=8$. Find the smaller of the two possible values of $\overline{B C}$.

Solution: Let D be the point diametrically opposite of point A on the circle. Consider $\angle A C D$ and $\angle A B D$. Both of these angles subtend half of the circle, and therefore both are right angles. By the Pythagorean Theorem, it follows that $\overline{B D}=\sqrt{10^{2}-6^{2}}=8$ and $\overline{C D}=\sqrt{10^{2}-8^{2}}=6$. Drop a perpendicular from point B to $\overline{A D}$ and call the foot F. Similarly, drop a perpendicular from point C to $\overline{A D}$ and call the foot G. We have that $\overline{B C} \cong \overline{F G}$. By $A=\frac{b h}{2}$, we have that $\overline{B F}=\frac{6 \times 8}{10}=\frac{24}{5}$. By the Pythagorean Theorem, we have that $\overline{A F}=\sqrt{6^{2}-\left(\frac{24}{5}\right)^{2}}=\frac{18}{5}$. It follows that $\overline{E F}=5-\frac{18}{5}=\frac{7}{5}$, and therefore $\overline{F G} \cong \overline{B C}=\frac{2 \times 7}{5}=\frac{14}{5}$ by symmetry.
7. In quadrilateral $A B C D$, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E. If $\overline{A B} \cong \overline{B E}=5, \overline{E C} \cong \overline{C D}=7$, and $\overline{B C}=11$, compute $\overline{A E}$.

Solution 1: Notice that $\angle A E B \cong \angle C E D$ and both $\triangle A E B$ and $\triangle E C D$ are isosceles. It follows that $\angle B A E \cong \angle A E B \cong \angle C E D \cong \angle E D C$, and therefore by $A A$ similarity, $\triangle A E B$ and $\triangle E D C$ are similar. It follows that $\angle A C D \cong \angle A B D$. This is one of the conditions for a cyclic quadrilateral, and therefore $A B C D$ is cyclic. It follows by Power of a Point that if $\overline{A E}=5 x$, then $\overline{E D}=7 x$, and it follows by similarity that $\overline{A D}=11 x$. From here, we can use Ptolemy's Theorem to find that $(7 x+5) \times(5 x+7)=11 \times 11 x+35$, and simplifying we get $47 x=35 x^{2}$. This equation has two solutions, $x=0$ and $x=\frac{47}{35}$. Clearly x is not 0 , so our answer is $5 \times \frac{47}{35}=\frac{47}{7}$.

Solution 2: Let $\overline{A E}=2 x$. Let the foot of the perpendicular from B to $\overline{A C}$ be F. It follows by symmetry that $\overline{A F} \cong \overline{F E}$ and $\angle A F B \cong \angle C F B=90^{\circ}$. Let $\overline{A F}=x$, and let $\overline{B F}=h$. It follows by the Pythagorean Theorem that $h^{2}=25-x^{2}=121-(7+x)^{2}$. Solving this, we get $14 x=47$, or $x=\frac{47}{14}$. It follows that $2 x=\overline{A E}=\frac{47}{7}$.
8. Robin has obtained a circular pizza with radius 2 . However, being rebellious, instead of slicing the pizza radially, he decides to slice the pizza into 4 strips of equal width both vertically and horizontally. What is the area of the smallest piece of pizza?

Solution: Label the diagram as shown above. We wish to calculate the piece of pizza enclosed by the points A, B, and C. Notice that this area can be thought of as taking the area of the sector enclosed by arc $\overparen{A B}$ and subtracting the areas of $\triangle E A C$ and $\triangle E C B$. Let the foot of the perpendicular from B to the horizontal radius be D as shown. It follows that $\overline{E B}=2$ and $\overline{B D}=1$. Because $\frac{\overline{B D}}{\overline{E B}}=\frac{1}{2}$, we have that $\angle E D B=30^{\circ}$ as $\triangle E D B$ is a $30-60-90$ triangle. It follows that $\overline{E D}=\sqrt{3}$. It follows that $\overline{B C} \cong \overline{A C}=\sqrt{3}-1$ by symmetry. Using $A=\frac{b h}{2}$, we have that $|\triangle E A C|=|\triangle E B D|=\frac{\sqrt{3}-1}{2}$ where $|\triangle E A C|$ is the area of $\triangle E A C$ and so on. Now consider the foot of the perpendicular from A to the vertical radius as shown, and call this foot F. By symmetry, we have $\angle F E A \cong \angle B E D=30^{\circ}$. It follows that $\angle A E B=90-30-30=30^{\circ}$. It follows that the area of the sector enclosed by $\overparen{A B}$ is $2^{2} \times \pi \times \frac{30^{\circ}}{360^{\circ}}=\frac{\pi}{3}$. Therefore, our answer is $\frac{\pi-3 \sqrt{3}+3}{3}$ or $\frac{\pi}{3}+1-\sqrt{3}$ as desired.
9. $A B C D$ is a parallelogram. $\overline{A B} \cong \overline{B C}=12$, and $\angle A B C=120^{\circ}$. Calculate the area of parallelogram $A B C D$.

Solution: Extend $\overline{B C}$ past B to some point I. Notice that $\angle A B I=180-120=60^{\circ}$. It follows because $\overline{A D} \| \overline{B C}$ that $\angle B A D=60^{\circ}$. Drop a perpendicular from B to $\overline{A D}$ and call the foot J as shown. It follows that $\triangle A J B$ is a $30-60-90$ triangle. Therefore, $\overline{B J}=12 \times \frac{\sqrt{3}}{2}=6 \sqrt{3}$. Because the area of a parallelogram is $A=b h$, it follows that the area of parallelogram $A B C D$ is $12 \times 6 \sqrt{3}=72 \sqrt{3}$.
10. A circle with radius 1 has diameter $\overline{A B}$. C lies on this circle such that the ratio of arc $\overline{A C}$ to arc $\overline{B C}$ is 4 . Segment $\overline{A C}$ divides the circle into two parts, and we will label the smaller part Region I. Similarly, segment $\overline{B C}$ also divides the circle into two parts, and we will denote the smaller one as Region $I I$. Find the positive difference between the areas of Regions I and $I I$.

Solution: Notice that region I is the area in the sector bounded by minor arc $\overparen{A C}$ and not inside $\triangle A D C$. Similarly, region $I I$ is the area in the sector bounded by minor arc $B C$ and not inside $\triangle B D C$. Therefore, we wish to calculate $|\overparen{A C}|+|\triangle A D C|-|\overparen{B C}|-|\triangle B D C|$ where $|\overparen{A C}|$ is the area of the sector bounded by minor arc $\overparen{A C}$ and so on. Notice that because $\overline{A D} \cong \overline{B D}$, and because $\triangle A D C$ and $\triangle B D C$ share the same height to these respective segments ($\overline{C E}$), by $A=\frac{b h}{2}$, we have that $|\triangle A D C|=|\triangle B D C|$. Thus, we just wish to compute $|\overparen{A C}|-|\overparen{B C}|$. Because $\angle A D C=4 \times \angle B D C$, and $\angle A D C+\angle B D C=180^{\circ}$, we have that $\angle A D C=144^{\circ}$ and $\angle B D C=36^{\circ}$. Thus, our result is $\pi \times(1)^{2} \times \frac{144}{360}-\pi \times(1)^{2} \times \frac{36}{360}=\frac{3 \pi}{10}$ as desired.
11. In trapezoid $A B C D, \overline{B C}$ is parallel to $\overline{A D}, \overline{A B}=13, \overline{B C}=15, \overline{C D}=14$, and $\overline{A D}=30$. Find the area of $A B C D$.

Solution 1: Drop perpendiculars from B and C to $\overline{A D}$ and call the feet E and F as shown above. Let $\overline{A E}=x$. It follows that $\overline{F D}=30-15-x=15-x$. Let $\overline{B E}=h$. It follows by the Pythagorean

Theorem that $h^{2}=13^{2}-x^{2}=14^{2}-(15-x)^{2}$. Solving gives us $x=\frac{198}{30}=\frac{33}{5}$. Plugging this back in gives us $h=\frac{56}{5}$. Because $A=\frac{\left(b_{1}+b_{2}\right) \times h}{2}$, our answer is $\frac{45 \times 56}{2 \times 5}=252$ as desired.

Solution 2: Extend $\overline{A B}$ past B and $\overline{C D}$ past C such that they intersect at point E as shown. Notice that because $\triangle E B C$ and $\triangle E A D$ share $\angle B E C \cong \angle A E D$, and $\overline{B C} \| \overline{A D}$, it follows that $\angle E B C \cong \angle E A D$, and by AA similarity we have $\triangle E B C \sim \triangle E A D$. It follows that $\overline{E B}=13$ and $\overline{E C}=14$. This means $\triangle E B C$ is a $13-14-15$ triangle. Because $\frac{\overline{A D}}{\overline{B C}}=2$, it follows that $\frac{|\triangle E A D|}{|\triangle E B C|}=2^{2}=4$. Either by memory, or by Heron's formula, we can find that $|\triangle E B C|=$ $\sqrt{21 \times(21-13) \times(21-14) \times(21-15)}=84$. It follows that $|\triangle E A D|=4 \times 84=336$, and from here we can get that $|A B C D|=|\triangle E A D|-|\triangle E B C|=336-84=252$ as desired.
12. Circle O has radius 18. From diameter $\overline{A B}$, there exists a point C such that $\overline{B C}$ is tangent to O and $\overline{A C}$ intersects O at a point D, with $\overline{A D}=24$. What is the length of $\overline{B C}$?

Solution: Drop a perpendicular from O to $\overline{A D}$ and call the foot E as shown. Because $\overline{A O} \cong \overline{O D}$, $\triangle A O D$ is isosceles and therefore $\overline{A E} \cong \overline{E D}$. It follows that $\overline{A E}=\frac{24}{2}=12$. It follows by the Pythagorean Theorem that $\overline{O E}=\sqrt{18^{2}-12^{2}}=6 \sqrt{5}$. Notice that $\triangle A E O$ and $\triangle A B C$ share $\angle E A O \cong \angle B A C$. They also have $\angle A E O \cong \angle A B C=90^{\circ}$. It follows by AA similarity that $\triangle A E O \sim \triangle A B C$. As a result, $\frac{\overline{A B}}{\overline{B C}}=\frac{\overline{A E}}{\overline{E O}}$. It follows that $\overline{B C}=\frac{\overline{A B} \times \overline{E O}}{\overline{A E}}=\frac{36 \times 6 \sqrt{5}}{12}=18 \sqrt{5}$ as desired.
13. Isosceles trapezoid $A B C D$ has $\overline{A B}=10, \overline{C D}=20, \overline{B C} \cong \overline{A D}$, and an area of 180 . Compute the length of $\overline{B C}$.

Solution: Drop a perpendicular from $\overline{A E}$ to $\overline{C D}$ as shown and call the foot E. By symmetry, we have that $\overline{E D}=\frac{20-10}{2}=5$. By $A=\frac{\left(b_{1}+b_{2}\right) \times h}{2}$, it follows that $h=\frac{180 \times 2}{10+20}=12$. Therefore, $\overline{A E}=12$. It follows by the Pythagorean Theorem that $\overline{A D} \cong \overline{B C}=\sqrt{12^{2}+5^{2}}=13$ as desired.
14. The coordinates of three vertices of a parallelogram are $A(1,1), B(2,4)$, and $C(-5,1)$. Compute the area of the parallelogram.

Solution 1: By inspection, we can find that any of the points $(-4,4),(8,4)$, or $(-6,-2)$ work as a fourth point D to make $A B C D$ a parallelogram. Thus, because $A=b \times h$, we have that our answer is $6 \times 3=18$.

Solution 2: Notice that in order to form a fourth point for our parallelogram, we must reflect one of the three points over the midpoint of the segment formed by the other two points. For example, in the diagram above, we reflect A over the midpoint of $\overline{B C}$ to get a fourth point A^{\prime} to complete our parallelogram. This is equivalent to reflecting $\triangle A B C$ over one of its sides, or in the example
above, over $\overline{B C}$. Therefore, no matter which parallelogram is formed, the total area will always be double the area of $\triangle A B C$. Therefore, by $A=\frac{b h}{2}$, our answer is $2 \times \frac{6 \times 3}{2}=18$ as desired.
15. Given a regular 2014-gon, we construct 2014 isosceles triangles on the exterior of the polygon such that each isosceles triangle has an edge of the polygon as its base and has legs formed by the extensions of the two adjacent sides. Compute in degrees the largest angle of one such triangle. (Note: This figure is not drawn to scale.)

Solution: We either remember or notice that the sum of the exterior angles going in a clockwise or counter-clockwise direction around a polygon will be 360°. A simple proof for convex polygons such as regular polygons involves taking a marker and going around the perimeter of the polygon, lying the marker in the direction of each side. As you go in one direction, the marker makes one complete revolution, so it follows that the sum of the exterior angles in that direction must be 360°. In a regular 2014-gon, all 2014 exterior angles must be the same, so it follows that in each isosceles triangle, each of the base angles must be $\frac{360}{2014}=\frac{180}{1007}$. Therefore, our answer is $180-\frac{2 \times 180}{1007}=\frac{180900}{1007}$ as desired.

3 Sources

1. 2013 Stanford Math Tournament General Problem 5
2. 2013 Stanford Math Tournament General Problem 15
3. 2013 Stanford Math Tournament General Problem 17
4. 2013 Stanford Math Tournament General Problem 19
5. 2013 Stanford Math Tournament General Problem 24
6. 2013 Stanford Math Tournament Geometry Tiebreaker Problem 2
7. 2013 Stanford Math Tournament Geometry Tiebreaker Problem 3
8. 2013 Stanford Math Tournament Geometry Problem 3
9. 2012 Stanford Math Tournament General Problem 15
10. 2012 Stanford Math Tournament General Problem 17
11. 2012 Stanford Math Tournament General Problem 21
12. 2012 Stanford Math Tournament General Problem 23
13. 2014 Stanford Math Tournament General Problem 7
14. 2014 Stanford Math Tournament General Problem 10
15. 2014 Stanford Math Tournament General Problem 15
