Geometry Handout #4

Walker Kroubalkian January 9, 2018

1 Problems

1. S-Corporation designs its logo by linking together 4 semicircles along the diameter of a unit circle. Find the perimeter of the shaded portion of the logo.

2. Let ABCD be a square with side length 2, and let a semicircle with flat side CD be drawn inside the square. Of the remaining area inside the square outside the semi-circle, the largest circle is drawn. What is the radius of this circle?

3. Triangle ABC satisfies the property that $\angle A = a \log x$, $\angle B = a \log 2x$, and $\angle C = a \log 4x$ radians, for some real numbers a and x. If the altitude to side \overline{AB} has length 8 and the altitude to side \overline{BC} has length 9, find the area of $\triangle ABC$.

4. Triangle $\triangle ABC$ has incircle O that is tangent to \overline{AC} at D. Let M be the midpoint of \overline{AC} . E lies on \overline{BC} so that line \overline{AE} is perpendicular to \overline{BO} extended. If $\overline{AC} = 2013$, $\overline{AB} = 2014$, and $\overline{DM} = 249$, find \overline{CE} .

5. What is the area of a square whose sides are the same length as the sides of an equilateral triangle with area 4?

6. Two rays start from a common point and have an angle of 60 degrees. Circle C is drawn with radius 42 such that it is tangent to the two rays. Find the radius of the circle that has radius smaller than circle C and is also tangent to C and the two rays.

7. Points A and B are fixed points in the plane such that $\overline{AB} = 1$. Find the area of the region consisting of all points P such that $\angle APB > 120^{\circ}$.

9. Circle C_1 has center O and radius \overline{OA} , and circle C_2 has diameter \overline{OA} . \overline{AB} is a chord of circle C_1 and \overline{BD} may be constructed with D on \overline{OA} such that \overline{BD} and \overline{OA} are perpendicular. Let C be the point where C_2 and \overline{BD} intersect. If $\overline{AC} = 1$, find \overline{AB} .

10. Given pentagon ABCDE with $\overline{BC} \cong \overline{CD} \cong \overline{DE} = 4$, $\angle BCD = 90^{\circ}$, and $\angle CDE = 135^{\circ}$, what is the length of \overline{BE} ?

11. Find the area of the convex quadrilateral with vertices at the points (-1, 5), (3, 8), (3, -1), and (-1, -2).

12. Given regular hexagon ABCDEF with center O and side length 6, what is the area of pentagon ABODE?

13. A quadrilateral ABCD is defined by the points A = (2, -1), B = (3, 6), C = (6, 10), and D = (5, -2). Let *l* be the line that intersects and is perpendicular to the shorter diagonal at its midpoint. What is the slope of *l*?

14. Given square ABCD with side length 3, we construct two regular hexagons on side \overline{AB} and \overline{CD} such that the hexagons contain the square. What is the area of the intersection of the two hexagons?

15. Let *E* be a random point inside rectangle *ABCD* with side lengths $\overline{AB} = 2$ and $\overline{BC} = 1$. What is the probability that angles $\angle AEB$ and $\angle CED$ are both obtuse?

Note: Originally this problem asked for the probability that angles $\angle ABE$ and $\angle CDE$ are obtuse. However, because the probability of this event is obviously 0, I believe the problem writers actually meant for the question to be as stated above. This rewritten problem coincides with the answer on their answer key.

2 Sources

- 1. 2013 Berkeley Math Tournament Spring Individual Problem 2
- 2. 2013 Berkeley Math Tournament Spring Individual Problem 4
- **3.** 2013 Berkeley Math Tournament Spring Individual Problem 12
- 4. 2013 Berkeley Math Tournament Spring Individual Problem 14
- 5. 2014 Berkeley Math Tournament Fall Speed Problem 32
- 6. 2013 Berkeley Math Tournament Spring Geometry Problem 2
- 7. 2013 Berkeley Math Tournament Spring Geometry Problem 5
- 8. 2013 Berkeley Math Tournament Spring Geometry Problem 6
- 9. 2013 Berkeley Math Tournament Spring Team Problem 5
- **10.** 2014 Berkeley Math Tournament Fall Individual Problem 7
- **11.** 2014 Berkeley Math Tournament Fall Individual Problem 9
- **12.** 2014 Berkeley Math Tournament Fall Individual Problem 14
- 13. 2014 Berkeley Math Tournament Fall Individual Problem 18
- 14. 2014 Berkeley Math Tournament Fall Team Problem 7
- 15. 2014 Berkeley Math Tournament Fall Team Problem 14