
UHS Math Club 2017-2018

Combinatorics Handout 3 Answers and Solutions
Walker Kroubalkian

November 7, 2017

1 Answers

1.
1

16
2. 10

3. MTMB

4. 225

5. 4

6. 1858

7. 34

8. 89

9. 320

10. 11

11. 35

12. 600

13.
1

120

14.
143

4096

15.
25

64

2 Solutions

1. You toss five coins one after another. What is the probability that you never get two consecutive
heads or two consecutive tails?

Solution: In order to never have two consecutive coin flips with the same side, the five coins must
alternate in their sides. If we let H represent a head and T represent tails, then we have that the
only possibilities for the five coins are HTHTH and THTHT . The total number of possibilities is

25 = 32. Therefore our answer is 2
32 =

1

16
.

2. Out of 100 customers at a market, 80 purchased oranges, 60 purchased apples, and 70 purchased
bananas. What is the least possible number of customers who bought all three items?
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Solution: Notice that there were 100−80 = 20 people who did not purchase oranges, 100−60 = 40
people who did not purchase apples, and 100− 70 = 30 people who did not purchase bananas. To
minimize the number of people who bought all three islands, we want the people from each of these
groups to all be distinct, so as to maximize the number of people who did not buy one of the items.
Therefore, our answer is 100− 20− 30− 40 = 10 .

3. Twelve distinct four-letter words can be formed by using each of the letters B, M , M , and T
exactly once. What is the ninth word when these words are arranged in alphabetical order?

Solution: The number of words that begin with B is the number of rearrangements of MMT ,
which is 3!

2! = 3. These words will come first in alphabetical order. The number of words that
begin with M is the number of rearrangements of BMT which is 3! = 6. Because 3 + 6 = 9, we
want the last of these rearrangements when written in alphabetical order. Therefore, our answer
is MTMB

4. How many three digit even numbers are there with an even number of even digits?

Solution: If a three digit number is even, its units digit must be even. If it has an even number of
even digits, then exactly one of the other two digits must be even. We will do casework on which
digit it is:

Case 1: The hundreds digit is even.

Because the hundreds digit cannot be 0, we have 4 possibilities (2, 4, 6, 8) for the hundreds digit, 5
possibilities for the tens digit (as it must be odd), and 5 possibilities for the units digit. Therefore,
we have a total of 4 · 5 · 5 = 100 possibilities in this case.

Case 2: The tens digit is even.

In this case, we have 5 possibilities for the hundreds digit, 5 possibilities for the tens digit, and 5
possibilities for the units digit, for a total of 5 · 5 · 5 = 125 possibilities in this case.

Adding up our cases, we have a total of 225 numbers which satisfy these properties.

5. Three boys, Bob, Charles, and Derek, and three girls, Alice, Elizabeth, and Felicia are all
standing in one line. Bob and Derek are each adjacent to precisely one girl, while Felicia is next
to two boys. If Alice stands before Charles, who stands before Elizabeth, determine the number of
possible ways they can stand in a line.

Solution: Let B represent Bob, C represent Charles, D represent Derek, A represent Alice, E
represent Elizabeth, and F represent Felicia. By the third condition, we know they are ordered in
some permutation of the form ?A?C?E? where each of the question marks can have any number of
people. Notice because B and D are next to precisely one girl, they are either on the ends, or they
are adjacent to one other boy. Notice if B were adjacent to C, F would need to be adjacent to D
and one of B or C. Either way, D would be adjacent to two girls, which is impossible. Therefore,
neither B or D is adjacent to C. If B were on an end of the line, D would either have to be adjacent
to C, in which case F could not be between two boys, adjacent to B, in which case F could not be
between two boys, or on the other end, in which case F could not be between two boys. Therefore,
B and D are adjacent to each other and they are surrounded by two girls. It follows that F is
adjacent to C and one of B or D. From here, we can find that the only possible permutations are
ABDFCE,ADBFCE,ACFBDE, and ACFDBE, for a total of 4 possibilities.

6. A spirited integer is a positive number representable in the form 20n + 13k for some positive
integer n and any integer k. Determine how many spirited integers are less than 2013.
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Solution: Let the smallest positive integer x such that 20x ≡ 1 (mod 13) be the order of 20
(mod 13). This is the same as the order of 7 (mod 13), as 20x ≡ 7x (mod 13) for all x. Because
7 is relatively prime to 13, we must have that the order of 7 (mod 13) is a factor of φ(13) = 12.
Listing out the remainders when powers of 7 are divided by 13, we get 7, 10, 5, 9, 11, 3,· · ·. Because
we have already listed 6 powers of 7 without encountering one with a remainder of 1, we know
that the order of 7 (mod 13) or the order of 20 (mod 13) is 12. This means that the powers
of 20 can take any remainder when divided by 13 except 0. Therefore, the only numbers which
are not representable in the form 20n + 13k are multiples of 13. It follows that our answer is
2012− b201213 c = 2012− 154 = 1858 .

7. A finite set of distinct, nonnegative integers {a1, ..., ak} is called admissible if the integer function
f(n) = (n+a1)· · · (n+ak) has no common divisor over all terms; that is, gcd(f(1), f(2), ..., f(n)) = 1
for any integer n. How many admissible sets only have members of value less than 10? {4} and
{0, 2, 6} are such sets, but {4, 9} and {1, 3, 5} are not.

Solution: If gcd(f(1), f(2), ..., f(n)) = 1 for any value of n, then it suffices for gcd(f(1), f(2)) to
be equal to 1. It follows that gcd((1 + a1)(1 + a2)· · · (1 + ak), (2 + a1)(2 + a2)· · · (2 + ak)) = 1. It
follows that for any prime p, there cannot be two values in ak ai, aj such that ai ≡ p− 2 (mod p)
and aj ≡ p− 1 (mod p). This gives us two cases:

Case 1: All members of ak are odd.

In this case, ak ∈ {1, 3, 5, 7, 9}. We know that we cannot have an element which leaves a remainder
of 1 (mod 3) and also have an element which leaves a remainder of 2 (mod 3). This means we
cannot have a value from {1, 7} while also having a value from {5}. Similarly, we cannot have an
element which leaves a remainder of 3 (mod 5) and also have an element which leaves a remainder
of 4 (mod 5). It follows that we cannot have both 3 and 9. This means that the total number of
possibilities in this case is 3 · 5− 1 = 14.

Case 2: All members of ak are even.

In this case, ak ∈ {0, 2, 4, 6, 8}. We know that we cannot have an element which leaves a remainder
of 1 (mod 3) and also have an element which leaves a remainder of 2 (mod 3), so we cannot have
a value from {4} while also having a value from {2, 8}. Similarly, we cannot have an element which
leaves a remainder of 3 (mod 5) and also have an element which leaves a remainder of 4 (mod 5).
Therefore, we cannot have both 8 and 4. It follows that the total number of possibilities for what
elements from the set {2, 4, 8} which work is 5. It does not matter if {0, 6} are in the set, so the
total number of possibilities if 5 · 4− 1 = 19.

Adding up our cases and the empty set, we have a total of 17 + 23 + 1 = 34 possibilities.

Note: According to the Berkeley Math Tournament solution for this problem, the answer is 44.
However, they over-counted several possibilities. I have checked my answer with the following
Python code:

import f r a c t i o n s
de f ge tSubset s ( x ) :

i f ( l en ( x)==1):
r e turn [ x , [ ] ]

a = getSubset s ( x [ 1 : ] )
t = [ ]
f o r y in a :

t . append ( y )
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c = [ ]
f o r z in y :

c . append ( z )
c . append ( x [ 0 ] )
t . append ( c )

re turn t

d = getSubset s ( [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ] )

de f prod ( a , b ) :
i f ( l en (b)==0):

r e turn 1
t = 1
f o r x in b :

t∗=(a+x )
return t

c = 0

f o r x in d :
i f ( f r a c t i o n s . gcd ( prod (1 , x ) , prod (2 , x ) ) == 1 ) :

c+=1

pr in t c

This code gives an output of 34.

8. The pages of a book are consecutively numbered from 1 through 480. How many times does
the digit 8 appear in this numbering?

Solution: We will do casework on the place in our page numbers where the digit 8 appears.

Case 1: The tens digit is an 8.

When the hundreds digit is 3 or less, there are ten possible units digits in this case. This gives us
a total of 4 · 10 = 40 numbers. When the hundreds digit is 4, the units digit has to be 0, so in total
we have 40 + 1 = 41 numbers in this case.

Case 2: The units digit is an 8.

This will occur once in every group of 10 from 0− 9 to 470− 479. There are a total of 48 of these
groups, so we have 48 numbers in this case.

Adding up our cases, we have a total of 41 + 48 = 89 numbers in this case.

9. A positive integer is said to be binary-emulating if its base three representation consists of only
0s and 1s. Determine the sum of the first 15 binary-emulating numbers.

Solution: Notice that the nth binary-enulating number is the result when the digits of n written
in binary are interpreted in base 3 and converted back to base 10. The first 15 binary-emulating
numbers therefore, are the numbers 00013, 00103, 00113· · · 11113. It follows that the sum of these
numbers is (1 + 3 + 9 + 27) · 8 = 320 .

10. Professor X can choose to assign homework problems from a set of problems labeled 1 to 30,
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inclusive. No two problems in his assignment can share a common divisor greater than 1. What is
the maximum number of problems that Professor X can assign?

Solution: Notice that there are 10 primes less than 30 (2, 3, 5, 7, 11, 13, 17, 19, 23, 29). It follows
that the largest set of problems that ProfessorX can assign is a set similar to {1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29},
as if any more problems were added, there would be two problems with the same prime factor. It
follows that the largest number of problems that Professor X can assign is 11 .

11. Alice and Bob play a game of Berkeley Ball, in which the first person to win four rounds is
the winner. No round can end in a draw. How many distinct games can be played in which Alice
is the winner? (Two games are said to be identical if either player wins/loses rounds in the same
order in both games.)

Solution: Notice that Alice must win the last game, and she must win 3 games before that while

Bob wins less than or equal to 3 games before that. Therefore, our answer is

(
3 + 0

3

)
+

(
3 + 1

3

)
+(

3 + 2

3

)
+

(
3 + 3

3

)
=

(
7

4

)
= 35 by the Hockey Stick Identity.

12. How many ways are there to place 3 indistinguishable pegs on a 5 × 5 chessboard so that no
two pegs lie in the same row or column?

Solution: First assume the pegs are distinguishable. There are 25 ways to choose the location
of the first peg. From here, one row and one column are eliminated, leaving 16 ways to choose
the location of the second peg. Finally, there are 9 ways to choose the location of the third peg.
Therefore, when the pegs are distinguishable, the number of ways to choose their locations is
25 · 16 · 9. However, because the pegs are indistinguishable, we must divide by 3! = 6 to account for
equivalent positions with different orderings of the pegs. Therefore, our answer is 25·16·9

6 = 600 .

13. Two boxes contain some number of red, yellow, and blue balls. The first box has 3 red, 4
yellow, and 5 blue balls, and the second box has 6 red, 2 yellow, and 7 blue balls. There are two
ways to select a ball from these boxes; one could first randomly choose a box and then randomly
select a ball or one could put all the balls in the same box and simply randomly select a ball from
there. How much greater is the probability of drawing a red ball using the second method than the
first?

Solution: In the first method of choosing a ball, the probability of selecting a red ball is 1
2 ·

3
12 +

1
2 ·

6
15 = 13

40 . In the second method of choosing a ball, the probability of selecting a red ball is

3+6
12+15 = 1

3 . Therefore, the difference is 1
3 −

13
40 =

1

120
.

14. A coin is flipped until there is a head followed by two tails. What is the probability that this
will take exactly 12 flips?

Solution: Let Hn be the number of ways to first get a head followed by two tails in n flips. If we
let H represent heads and T represent tails, then a permutation with this property and n flips is
equivalent to appending HTT to the end of a permutation without this property and n − 3 flips.
The total number of permutations with n − 3 flips is 2n−3, and the number of permutations with
the property and n−3 flips is Hn−3+2Hn−4+4Hn−5+· · ·. Therefore, Hn = 2n−3−Hn−3−2Hn−4−
4Hn−5−· · · for n ≥ 3. We know H0 = 0, H1 = 0, and H2 = 0, so using this recursion repeatedly we

get H12 = 143. The total number of possibilities in 12 flips is 212 = 4096, so our answer is
143

4096
.

15. If I roll three fair 4-sided dice, what is the probability that the sum of the resulting numbers
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is relatively prime to the product of the resulting numbers?

Solution: If we let the rolls be x, y, z, then this property is equivalent to gcd(x, y + z) = 1,
gcd(y, x + z) = 1, and gcd(z, x + y) = 1. By brute force, we can find that the only triples
(x, y, z) that satisfy this are (1, 1, 1), (1, 1, 3), (1, 2, 2), (1, 2, 4), (1, 3, 3), (1, 4, 4), (2, 2, 3), (3, 4, 4) and
permutations. Adding up all of these permutations, we get a total of 1+3+3+6+3+3+3+3 = 25
triples which work. The total number of possibilities when 3 4-sided dice are rolled is 43 = 64.

Therefore, our answer is
25

64
.

3 Sources

1. Berkeley Math Tournament Individual Fall 2013 Problem 6
2. Berkeley Math Tournament Individual Fall 2013 Problem 8
3. Berkeley Math Tournament Individual Fall 2013 Problem 10
4. Berkeley Math Tournament Individual Fall 2013 Problem 12
5. Berkeley Math Tournament Individual Fall 2013 Problem 13
6. Berkeley Math Tournament Individual Fall 2013 Problem 18
7. Berkeley Math Tournament Individual Fall 2013 Problem 20
8. Berkeley Math Tournament Team Fall 2013 Problem 8
9. Berkeley Math Tournament Team Fall 2013 Problem 12
10. Berkeley Math Tournament Team Fall 2013 Problem 13
11. Berkeley Math Tournament Team Fall 2013 Problem 15
12. Berkeley Math Tournament Speed Fall 2013 Problem 59
13. Berkeley Math Tournament Individual Spring 2013 Problem 3
14. Berkeley Math Tournament Discrete Spring 2013 Problem 6
15. Berkeley Math Tournament Discrete Spring 2013 Problem 2
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