Combinatorics Handout \#8 Answers and Solutions

Walker Kroubalkian

April 24, 2018

1 Answers

1. $\frac{3}{5}$
2. 24
3. $\frac{1}{12}$
4. 39
5. 5
6. 144
7. 64
8. 728
9. 9
10. 2080
11. 48
12. 26
13. 825
14. 26
15. 5

2 Problems

1. Consider a round table with six identical chairs. If four students and two teachers randomly take seats, what is the probability that two teachers will not sit next to each other?
Solution: Fix the location of an arbitrary teacher. There are two seats which are next to this teacher, and there are 5 possible locations for the second teacher. It follows that our answer is $\frac{5-2}{5}=\frac{3}{5}$.
2. There are three different French books and two different Spanish books. How many ways are there to arrange the books in a row on a shelf with all books of the same language grouped together?
Solution: There are $2!=2$ ways to decide which group of books are first, there are $3!=6$ ways to order the French books, and there are $2!=2$ ways to order the Spanish books. It follows that
our answer is $2 \cdot 6 \cdot 2=24$.
3. Three points are randomly located on a circle. What is the probability that the shortest distance between each point is less than or equal to the radius of the circle?

Solution: Fix the location of an arbitrary point. When a second point is at exactly a distance of the radius of the circle from the first point, we must have that the arc between the two points is a 60° arc of the circle. It follows that the probability that the second point is within a 60° arc of the first point is $\frac{2 \cdot 60}{360}=\frac{1}{3}$. On average in these cases, the second point will be 30° away from the first point. It follows that on average, the probability that the third point will be within a radial distance of each of the other two points is $30^{\circ}+2 \cdot\left(60^{\circ}-30^{\circ}\right)=90^{\circ}$. Therefore, the probability that the third point satisfies the condition is $\frac{90}{360}=\frac{1}{4}$. It follows that our answer is $\frac{1}{3} \cdot \frac{1}{4}=\frac{1}{12}$.
4. How many two digit positive integers are multiples of 3 and/or 7 ?

Solution: Between 10 and 99 , there are $\frac{99}{3}-\frac{12}{3}+1=30$ multiples of 3 . Between 10 and 99 , there are $\frac{98}{7}-\frac{14}{7}+1=13$ multiples of 7 . Finally, between 10 and 99 , there are $\frac{84}{21}-\frac{21}{21}+1=4$ multiples of 21 . It follows that our answer is $30+13-4=39$ two-digit multiples of 3 and/or 7 .
5. How many ordered pairs (x, y) of positive integers x and y satisfy the equation $3 x+5 y=80$?

Solution: Notice that because the right hand side is a multiple of 5 , we must have that $3 x$ is a multiple of 5 . Therefore, x can only be equal to $5,10,15,20$, or 25 . It follows that we have 5 total solutions.
6. Find the number of 10 -tuples $\left(a_{1}, a_{2}, \ldots, a_{10}\right)$ such that $a_{i} \in\{1,2,3\}$ for $1 \leq i \leq 10, a_{i}<a_{i+1}$ if $i=1,3,5,7,9$ and $a_{i}>a_{i+1}$ if $i=2,4,6,8$.

Solution: Let F_{n} be the number of n-tuples with these properties such that $a_{n}=1$, let G_{n} be the number of n-tuples with these properties such that $a_{n}=2$, and let H_{n} be the number of n tuples with these properties such that $a_{n}=3$. We can easily see that, in general, when n is even, $F_{n}=0, G_{n}=F_{n-1}$, and $H_{n}=G_{n-1}+F_{n-1}$. We can easily see that, in general, when n is odd, $F_{n}=G_{n-1}+H_{n-1}, G_{n}=H_{n-1}$, and $H_{n}=0$. We can calculate that $F_{n}=1, G_{n}=1$, and $H_{n}=1$. With these recurrences, we can generate the following table of values:

n	F_{n}	G_{n}	H_{n}
1	1	1	1
2	0	1	2
3	3	2	0
4	0	3	5
5	8	5	0
6	0	8	13
7	21	13	0
8	0	21	34
9	55	34	0
10	0	55	89

It follows that our answer is $F_{10}+G_{10}+H_{10}=0+55+89=144$.
7. Find the number of 5 -tuples of positive integers $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ such that $x_{1}=x_{5}, x_{i} \neq x_{i+1}$ for $i=1,2,3,4$, and $x_{i}+x_{i+1} \leq 6$ for $i=1,2,3,4$.

Solution: We will do casework on the value of x_{1}. If $x_{1}=5$, then we must have $x_{2}=x_{4}=1$ and x_{3} can be $2,3,4$, or 5 . It follows that we have 4 possibilities. If $x_{1}=4$, then we must have $x_{2}, x_{4} \leq 2$. Regardless of the values of x_{2}, and x_{4}, x_{3} can be 3 , or 4 , so we have at least $2^{3}=8$ solutions. If $x_{2}=x_{4}=2$, then x_{3} can be 1. If $x_{2}=x_{4}=1$, then x_{3} can be 2 or 5 . It follows that we have $8+1+2=11$ solutions. If $x_{1}=3$, then we must have $x_{2}, x_{4} \leq 2$. It follows that we have the same number of solutions as when $x_{1}=4$, so we have 11 solutions in this case. If $x_{1}=2$, then we must have $x_{2}, x_{4} \leq 4$. If $x_{3}=3,4$, or 5 , then we must have $x_{2}=x_{4}=1$ for 3 solutions. If $x_{3}=2$, then we have $3^{2}=9$ solutions. Finally, if $x_{3}=1$, then we have $2^{2}=4$ solutions. It follows that we have $3+9+4=16$ solutions in this case. When $x_{1}=x_{5}=1$, we must have $x_{2}, x_{4} \leq 5$. If $x_{3}=1$, then we have $4^{2}=16$ possibilities. If $x_{3}=2$, then we have $2^{2}=4$ solutions. If $x_{3}=3$, then we have $1^{2}=1$ solution. If $x_{3}=4$, then we have $1^{2}=1$ solution. It follows that we have $16+4+1+1=22$ solutions in this case. It follows that our answer is $4+11+11+16+22=64$.
8. Find the number of functions $f:\{1,2,3,4,5\} \rightarrow\{1,2,3,4,5\}$ such that for $k=1,2,3,4$, $f(k+1) \leq f(k)+1$.

Solution: Let A_{n} be the number of choices for $f(1), f(2), \cdots$ and $f(n)$ such that $f(n)=1$. Let B_{n} be defined similarly such that $f(n)=2$. Let C_{n} be defined similarly such that $f(n)=3$. Let D_{n} be defined similarly such that $f(n)=4$. Finally, let E_{n} be defined similarly such that $f(n)=5$. We know that $A_{1}=B_{1}=C_{1}=D_{1}=E_{1}=1$ and that $A_{n}=A_{n-1}+B_{n-1}+C_{n-1}+D_{n-1}+E_{n-1}, B_{n}=$ $A_{n-1}+B_{n-1}+C_{n-1}+D_{n-1}+E_{n-1}, C_{n}=B_{n-1}+C_{n-1}+D_{n-1}+E_{n-1}, D_{n}=C_{n-1}+D_{n-1}+E_{n-1}$, and $E_{n}=D_{n-1}+E_{n-1}$. It follows that we can create the following table of values:

n	A_{n}	B_{n}	C_{n}	D_{n}	E_{n}
1	1	1	1	1	1
2	5	5	4	3	2
3	19	19	14	9	5
4	66	66	47	28	14
5	221	221	155	89	42

It follows that our answer is $A_{5}+B_{5}+C_{5}+D_{5}+E_{5}=221+221+155+89+42=728$.
9. Let $q(n)$ be the number of ways to express n as a sum of two positive integers, using each of them at least once. For example, since $5=4+1=3+2=3+1+1=2+2+1=2+1+1+1$, we have $q(5)=5$. Find the number of positive integers n such that $n \leq 100, n \equiv 3(\bmod 4)$, and $q(n) \equiv 0(\bmod 2)$.
Solution: Through brute force, we can find that $q(3)=1, q(7)=11, q(11)=27, q(15)=44$, $q(19)=71, q(23)=97, q(27)=126, q(31)=157, q(35)=182, q(39)=230, q(43)=259$, $q(47)=295, q(51)=352, q(55)=368, q(59)=413, q(63)=475, q(67)=499, q(71)=541$, $q(75)=629, q(79)=631, q(83)=677, q(87)=784, q(91)=764, q(95)=824$, and $q(99)=935$. It follows that $q(4 x+3)$ is even when $x=3,6,8,9,12,13,21,22$, and 23 . Therefore, there are 9 positive integers n which work.
10. In a 2×6 matrix, we want to fill 1 or 2 in each term. Also, for $i=1,2,3,4,5,6$, define c_{i} as the product of the terms in the i th column. How many ways are there to fill the terms so that

$$
\sum_{i=1}^{6} c_{i} \equiv 0 \quad(\bmod 2) ?
$$

Solution: We will do casework on the number of columns with odd products. If all 6 columns have odd products, then there is 1 possibility. If 4 columns have odd products, then there are $\binom{6}{2} \cdot 3^{2}=135$ possibilities. If 2 columns have odd products, then there are $\binom{6}{2} \cdot 3^{4}=1215$ possibilities. If 0 columns have odd products, then there are $3^{6}=729$ possibilities. It follows that our answer is $1+135+1215+729=2080$.
11. In the set $\{1,2,3, \ldots, 8\}$, how many subsets contain 4 consecutive integers?

Solution: We will do casework on the length of the longest run of consecutive integers in our subset. If the subset contains 8 consecutive integers, then there is only 1 subset. If the subset contains 7 consecutive integers, then there are 2 subsets. If the subset contains 6 consecutive integers, then there are $2 \cdot 2+1=5$ subsets. If the subset contains 5 consecutive integers, then there are $2 \cdot 2^{2}+2 \cdot 2^{1}=12$ subsets. Finally, if the subset contains 4 consecutive integers, then there are $2 \cdot 2^{3}+3 \cdot 2^{2}=28$ subsets. It follows that our answer is $1+2+5+12+28=48$.
12. In a regular 20 -gon with 1 as the length of all sides, pick 5 points to make a pentagon. How many pentagons have all of its sides larger than 2 ? If two pentagons are the same when rotated, they are still considered to be different.
Solution: We can easily find that the radius of the circumcircle of the regular 20-gon is $\frac{1}{2 \sin \left(9^{\circ}\right)}$. It follows that if a segment connects the ends of a minor arc which contains x edges of the 20-gon, then the length of that segment is $\frac{\sin \left(9 x^{\circ}\right)}{\sin 9^{\circ}}$. It follows that we wish to calculate the minimum value of x such that $\sin \left(9 x^{\circ}\right)>2 \sin \left(9^{\circ}\right)$. By $\sin (2 x)=2 \sin (x) \cos (x)$, we know that $\sin \left(18^{\circ}\right)<2 \sin \left(9^{\circ}\right)$. By $\sin (3 x)=3 \sin (x)-4 \sin ^{3}(x)$, we know that $\frac{\sin \left(27^{\circ}\right)}{\sin \left(9^{\circ}\right)}=3-4 \sin ^{2}\left(9^{\circ}\right)$. Because $4 \sin ^{2}(x)=1$ when $x=30^{\circ}$, we know that $\sin (27 \circ)>2 \sin \left(9^{\circ}\right)$. It follows that any pentagon where all sides pass over more than 2 sides of the 20 -gon will work. It follows that we wish to investigate sums of 5 numbers which are all greater than or equal to 3 which evaluate to 20 . We can find that the only sums that work are $3+3+3+3+8,3+3+3+4+7,3+3+3+5+6,3+3+4+4+6,3+3+4+5+5,3+4+4+4+5$, and $4+4+4+4+4$. The first sum results in exactly 1 pentagon. The second sum results in exactly 4 pentagons. The third sum results in 4 pentagons. The fourth sum results in 6 pentagons. The fifth sum results in 6 pentagons. The sixth sum results in 4 pentagons. The seventh sum results in 1 pentagon. It follows that our answer is $1+4+4+6+6+4+1=26$.
13. We want to choose 8 people out of 20 people who are sitting in a circle. We do not want to choose two people who are next to each other. Calculate how many ways are possible.
Solution: There are 20 ways to choose an arbitrary person as our "leftmost" person. From here, we wish to choose positive integers a, b, c, d, e, f, g, and h such that $a+1+b+1+c+1+d+1+e+$ $1+f+1+g+1+h=19$, or $a+b+c+d+e+f+g+h=12$. By Stars and Bars, it follows that there are $\binom{11}{7}$ ways to do this. It follows that in total, there are $20 \cdot\binom{11}{7}$ possibilities. However, because the "leftmost" person could be any of the 8 people in our set, we must divide by 8 . It follows that our answer is $\frac{330 \cdot 20}{8}=825$.
14. How many 5 -digit numbers are there such that all digits are either $1,2,3$, or 4 and no two digits next to each other differ by 1 ?
Solution: Let f_{n} be the number of n-digit numbers with this property such that the units digit is either a 1 or a 4 . Let g_{n} be the number of n-digit numbers with this property such that the units digit is either a 2 or a 3 . Then we have that $f_{1}=g_{1}=2, g_{n}=f_{n-1}$ and $f_{n}=g_{n-1}+f_{n-1}$. Using these properties, we can create the following table:

n	f_{n}	g_{n}
1	2	2
2	4	2
3	6	4
4	10	6
5	16	10

It follows that our answer is $f_{5}+g_{5}=16+10=26$.
15. Find the number of subsets of $\{1,2, \ldots, 23\}$ such that the number of elements is 11 and the sum of the elements is 194.

Solution: Notice that the maximum sum of 11 elements is $23 \cdot 11-(1+2+\cdots+10)=253-55=198$. It follows that there is a 1 to 1 correspondence between subsets with a sum of 194 and subsets with a sum of $1+2+\cdots+11+4=70$. Notice that it is impossible to increase an element between 1 and 7 without having 2 of the same elements in the subset. Therefore, we only need to increase the elements of $\{8,9,10,11\}$ by a collective total of 4 . Through brute force, we can find that the only options are $\{9,10,11,12\},\{8,10,11,13\},\{8,9,11,14\},\{8,9,12,13\}$, and $\{8,9,10,15\}$. It follows that our answer is 5 .

3 Sources

1. KSEA National Mathematics Competition 2007 11th Grade Problem 2 (Korea)
2. KSEA National Mathematics Competition 2007 10th Grade Problem 11 (Korea)
3. KSEA National Mathematics Competition 2007 10th Grade Problem 15 (Korea)
4. KSEA National Mathematics Competition 2007 9th Grade Problem 7 (Korea)
5. KSEA National Mathematics Competition 2007 9th Grade Problem 10 (Korea)
6. Korean Mathematical Olympiad First Round 2015 Problem 2
7. Korean Mathematical Olympiad First Round 2015 Problem 7
8. Korean Mathematical Olympiad First Round 2015 Problem 10
9. Korean Mathematical Olympiad First Round 2015 Problem 12
10. Korean Mathematical Olympiad First Round 2014 Problem 2
11. Korean Mathematical Olympiad First Round 2014 Problem 5
12. Korean Mathematical Olympiad First Round 2014 Problem 10
13. Korean Mathematical Olympiad First Round 2013 Problem 1
14. Korean Mathematical Olympiad First Round 2013 Problem 12
15. Korean Mathematical Olympiad First Round 2012 Problem 1 (Adapted)
