Algebra Handout 3 Answers and Solutions

Walker Kroubalkian

November 28, 2017

1 Answers

1. $(2,1)$
2. -3
3. 19
4. $\frac{4}{7}$
5. $\frac{3+\sqrt{26}}{2}$
6. 439
7. $\frac{2 \sqrt{11}+\sqrt{41}+3}{4}$
8. $\left(3, \frac{1}{3}\right),(1,3)$
9. $\frac{257}{16}$
10. 2
11. $\frac{3}{2}$
12. -34
13. 1
14. -3193
15. 23

2 Solutions

1. Find all ordered pairs (x, y) such that $(x-2 y)^{2}+(y-1)^{2}=0$.

Solution: Notice that because the Left Hand Side (LHS) of this equation is the sum of perfect squares, the LHS can only be equal to 0 if each perfect square is equal to 0 . It follows that $y-1=0$ and $x-2 y=0$. From here, it is easy to see that $y=1$ and $x=2$. It follows that the only solution is $(2,1)$ as desired.
2. Find the product of all real x for which $2^{3 x+1}-17 \cdot 2^{2 x}+2^{x+3}=0$.

Solution: Let $2^{x}=a$. It follows that $2 a^{3}-17 a^{2}+8 a=0$. Because $2^{x} \neq 0$, it follows that
$2 a^{2}-17 a+8=0$. Using the Quadratic Formula, it follows that $a=\frac{1}{2}$ or $a=8$. It follows that $x=-1$ or $x=3$, and therefore our answer is -3 .
3. Find the largest positive integer n such that $n^{3}+4 n^{2}-15 n-18$ is the cube of an integer.

Solution: Notice that when n is large, $n^{3}+4 n^{2}-15 n-18>n^{3}$ and $n^{3}+4 n^{2}-15 n-18<$ $n^{3}+6 n^{2}+12 n+8=(n+2)^{3}$. It follows that $n^{3}+4 n^{2}-15 n-18=(n+1)^{3}=n^{3}+3 n^{2}+3 n+1$, and from here it follows that $n^{2}-18 n-19=(n-19)(n+1)=0$. It follows that the largest integer n which satisfies this property is $n=19$.
4. Given that $a+b+c=5$ and that $1 \leq a, b, c \leq 2$, what is the minimum possible value of $\frac{1}{a+b}+\frac{1}{b+c}$?
Solution: Notice that we wish to minimize $\frac{1}{a+b}+\frac{1}{b+c}=\frac{1}{5-c}+\frac{1}{5-a}$. This will clearly be minimized when a and c are minimized, so it makes sense for b to be equal to 2 , making $a+c=3$. Now we wish to minimize $\frac{10-a-c}{(5-a)(5-c)}=\frac{7}{(5-a)(5-c)}$. Because $5-a+5-c=10-3=7$, by $A M-G M$, $\frac{7}{2} \geq \sqrt{(5-a)(5-c)}$. It follows that our minimum value is $\frac{7}{\left(\frac{7}{2}\right)^{2}}=\frac{4}{7}$.
5. Find the maximum value of $x+y$, given that $x^{2}+y^{2}-3 y-1=0$.

Solution: Notice that this equation is equivalent to $x^{2}+\left(y-\frac{3}{2}\right)^{2}=\frac{13}{4}$ which is a circle of radius $\frac{\sqrt{13}}{2}$ centered at $\left(0, \frac{3}{2}\right)$. The value of $x+y$ will be maximized at a point on this circle where the tangent line has a slope of -1 . This will occur when the x-displacement and the y-displacement from the center of the circle to the point are the same, which occurs at a 45° angle with the positive x-direction. It follows that our answer is $x+y=\frac{3}{2}+\frac{\sqrt{26}}{4}+\frac{\sqrt{26}}{4}=\frac{3+\sqrt{26}}{2}$.
6. A polynomial P is of the form $\pm x^{6} \pm x^{5} \pm x^{4} \pm x^{3} \pm x^{2} \pm x \pm 1$. Given that $P(2)=27$, what is $P(3)$?
Solution: Notice that when $x=2$,

$$
P(x)= \pm x^{6} \pm x^{5} \pm x^{4} \pm x^{3} \pm x^{2} \pm x \pm 1=x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1-\left(\sum x^{n+1}\right)
$$

where x^{n} is a term in the expansion of $P(x)$ with a coefficient of -1 . When $x=2$, this can be rewritten as

$$
P(x)=127-\left(\sum x^{n+1}\right)
$$

. Because n ranges from 0 to 6 , the value of $\sum x^{n+1}$ can be any even integer between 0 and $2 \cdot 127=254$ inclusive. Because there are only $2^{7}=128$ possibilities for $P(x)$, and there are only 128 even integers in this range, it follows that there is exactly one polynomial $P(x)$ of this form such that $P(2)=27$. By guessing and checking, we can find that $P(x)=x^{6}-x^{5}-x^{4}+x^{3}+x^{2}-x+1$ is the only polynomial P such that $P(2)=27$. It follows that $P(3)=729-243-81+27+9-3+1=439$ as desired.
7. What is the sum of the positive solutions to $2 x^{2}-x \cdot\lfloor x\rfloor=5$, where $\lfloor x\rfloor$ is the largest integer less than or equal to x ?
Solution: We will use the fact that $x=\lfloor x\rfloor+\{x\}$ where $\{x\}$ is the fractional part of x. Letting $\{x\}=a$ and $\lfloor x\rfloor=b$, we have that $2(a+b)^{2}-(a+b) b=5$. Rearranging this, we get $2 a^{2}+3 a b+b^{2}$. Because $a+b$ is positive, we must have $0 \leq b \leq 2$. When $b=0$, we have that $2 a^{2}=5$, resulting in $a^{2}=\frac{5}{2}$, which is impossible. When $b=1$, we have that $a=\frac{\sqrt{41}-3}{4}$ which is possible. When
$b=2$, we have that $a=\frac{\sqrt{11}-3}{2}$ which is possible. Therefore, our answer is $1+2+\frac{\sqrt{41}-3}{4}+\frac{\sqrt{11}-3}{2}=$ $\frac{2 \sqrt{11}+\sqrt{41}+3}{4}$ as desired.
8. Find all ordered pairs of real numbers (x, y) such that $x^{2} y=3$ and $x+x y=4$.

Solution: Let $a=x$, and let $b=x y$. Then we have that $a+b=4$ and $a b=3$. By Vieta's equations, it follows that a and b are roots of $z^{2}-4 z+3=0$. Therefore, either $x=3$ and $x y=1$, or $x=1$ and $x y=3$. It follows that our solutions are $\left(3, \frac{1}{3}\right),(1,3)$.
9. Find all real values of x for which

$$
\frac{1}{\sqrt{x}+\sqrt{x-2}}+\frac{1}{\sqrt{x+2}+\sqrt{x}}=\frac{1}{4} .
$$

Solution: Rationalizing the denominators of these fractions, we find that $\frac{\sqrt{x}-\sqrt{x-2}}{2}+\frac{\sqrt{x+2}-\sqrt{x}}{2}=\frac{1}{4}$. It follows that $\sqrt{x+2}-\sqrt{x-2}=\frac{1}{2}$. It follows that $x+2=\left(\frac{1}{2}+\sqrt{x-2}\right)^{2}$, or $x+2=\frac{1}{4}+2 \sqrt{x-2}+$ $x-2$, or $\frac{15}{4}=\sqrt{x-2}$. It follows that $x-2=\frac{225}{16}$, from which we can find that $x=\frac{257}{16}$ as desired.
10. Let $\mathrm{Q}(\mathrm{x})=x^{2}+2 x+3$, and suppose that $P(x)$ is a polynomial such that

$$
P(Q(x))=x^{6}+6 x^{5}+18 x^{4}+32 x^{3}+35 x^{2}+22 x+8 .
$$

Compute $P(2)$.
Solution: Notice that $P(2)=P\left(Q\left(Q^{-1}(2)\right)\right)$. Therefore, it suffices to find the value of x such that $Q(x)=x^{2}+2 x+3=2$. This simplifies rather nicely, as we obtain $x^{2}+2 x+1=(x+1)^{2}=0 \rightarrow$ $x=-1$. Therefore, our answer is $P(Q(-1))=1-6+18-32+35-22+8=2$.
11. Find the largest real number λ such that $a^{2}+b^{2}+c^{2}+d^{2} \geq a b+\lambda b c+c d$ for all real numbers a, b, c, d.
Solution: Notice that we can rearrange the given inequality to obtain $\left(a-\frac{b}{2}\right)^{2}+\left(d-\frac{c}{2}\right)^{2}+\frac{3 b^{2}}{4}+\frac{3 c^{2}}{4} \geq$ $\lambda b c$. To minimize the lefthand side of this inequality, we must have $a=\frac{b}{2}$ and $d=\frac{c}{2}$, giving us $\frac{3 b^{2}}{4}+\frac{3 c^{2}}{4} \geq \lambda b c$. By AM-GM, we know that $\frac{b^{2}+c^{2}}{2} \geq \sqrt{b^{2} c^{2}}=1 b c$. Therefore, $\lambda=\frac{\frac{3}{4}}{\frac{1}{2}}=\frac{3}{2}$ as desired.
12. Let a, b, c, x be reals with $(a+b)(b+c)(c+a) \neq 0$ that satisfy

$$
\frac{a^{2}}{a+b}=\frac{a^{2}}{a+c}+20, \frac{b^{2}}{b+c}=\frac{b^{2}}{b+a}+14, \text { and } \frac{c^{2}}{c+a}=\frac{c^{2}}{c+b}+x .
$$

Compute x.
Solution: We can rewrite the given equations as $\frac{a^{2}}{a+b}-\frac{a^{2}}{a+c}=20, \frac{b^{2}}{b+c}-\frac{b^{2}}{b+a}=14$, and $\frac{c^{2}}{c+a}-\frac{c^{2}}{c+b}=x$. Adding these three equations and rearranging their terms, we get $\frac{b^{2}-c^{2}}{b+c}+\frac{c^{2}-a^{2}}{a+c}+\frac{a^{2}-b^{2}}{a+b}=34+x$. We can rewrite the Left Hand Side of this equation as $b-c+c-a+a-b=0=34+x$. Therefore, $x=-34$.
13. If a and b satisfy the equations $a+\frac{1}{b}=4$ and $\frac{1}{a}+b=\frac{16}{15}$, determine the product of all possible values of $a b$.

Solution: Adding the two equations, we get $a+b+\frac{1}{a}+\frac{1}{b}=(a+b)\left(1+\frac{1}{a b}\right)=\frac{76}{15}$. Rearranging the two equations, we get $4 b=a b+1$ and $a b+1=\frac{16 a}{15}$, which we can rewrite as $16 b=4 a b+4$ and $16 a=15 a b+15$. It follows that $a+b=\frac{19}{16}(a b+1)$. It follows that $\frac{76}{15}=\frac{19}{16 a b}(a b+1)^{2}$, or $\frac{64 a b}{15}=(a b+1)^{2}$. Letting $a b=x$, we get that $(x+1)^{2}=\frac{64 x}{15}$, or $x^{2}-\frac{34 x}{15}+1=0$. By Vieta's equations, it follows that the product of all possible values of $x=a b$ is 1 .
14. Find the sum of the coefficients of the polynomial $P(x)=x^{4}-29 x^{3}+a x^{2}+b x+c$, given that $P(5)=11, P(11)=17$, and $P(17)=23$.
Solution: We can notice that when $x=5, x=11$, or $x=17, P(x)=x+6$. It follows that $P(x)=(x-5)(x-11)(x-17) Q(x)+x+6$. Because P is monic and its x^{3} term has a coefficient of -29 , it follows that $Q(x)=x+4$. Therefore, $P(x)=(x-5)(x-11)(x-17)(x+4)+x+6$. Because the sum of the coefficients of a polynomial P is $P(1)$, it follows that our answer is $(-4) \cdot(-10) \cdot(-16) \cdot 5+1+6=$ $7-3200=-3193$ as desired.
15. Let $f(x)=x^{2}+6 x+7$. Determine the smallest possible value of $f(f(f(f(x))))$ over all real numbers x.
Solution: We can notice that $f(x)=(x+3)^{2}-2$. It follows that $f(f(f(f(x))))=\left(\left((x+3)^{2}+1\right)^{2}\right)+$ $\left.1)^{2}-2\right)$. Clearly, this will be minimized when $x=-3$, resulting in the value $\left(\left((1)^{2}+1\right)^{2}+1\right)^{2}-2=$ $25-2=23$ as desired.

3 Sources

1. 2008 November Harvard MIT Math Tournament General Problem 7
2. 2008 November Harvard MIT Math Tournament General Problem 9
3. 2008 November Harvard MIT Math Tournament General Problem 10
4. 2009 November Harvard MIT Math Tournament General Problem 2
5. 2009 November Harvard MIT Math Tournament General Problem 6
6. 2010 November Harvard MIT Math Tournament General Problem 5
7. 2010 November Harvard MIT Math Tournament General Problem 6
8. 2011 November Harvard MIT Math Tournament General Problem 1
9. 2011 November Harvard MIT Math Tournament General Problem 5
10. 2012 November Harvard MIT Math Tournament General Problem 2
11. 2013 November Harvard MIT Math Tournament General Problem 7
12. 2014 November Harvard MIT Math Tournament General Problem 8
13. 2016 November Harvard MIT Math Tournament General Problem 1
14. 2011 November Harvard MIT Math Tournament Team Problem 3
15. 2014 November Harvard MIT Math Tournament Team Problem 2
