Algebra Handout 3

Walker Kroubalkian

November 21, 2017

1 Problems

1. Find all ordered pairs (x, y) such that $(x-2 y)^{2}+(y-1)^{2}=0$.
2. Find the product of all real x for which $2^{3 x+1}-17 \cdot 2^{2 x}+2^{x+3}=0$.
3. Find the largest positive integer n such that $n^{3}+4 n^{2}-15 n-18$ is the cube of an integer.
4. Given that $a+b+c=5$ and that $1 \leq a, b, c \leq 2$, what is the minimum possible value of $\frac{1}{a+b}+\frac{1}{b+c}$?
5. Find the maximum value of $x+y$, given that $x^{2}+y^{2}-3 y-1=0$.
6. A polynomial P is of the form $\pm x^{6} \pm x^{5} \pm x^{4} \pm x^{3} \pm x^{2} \pm x \pm 1$. Given that $P(2)=27$, what is $P(3)$?
7. What is the sum of the positive solutions to $2 x^{2}-x \cdot\lfloor x\rfloor=5$, where $\lfloor x\rfloor$ is the largest integer less than or equal to x ?
8. Find all ordered pairs of real numbers (x, y) such that $x^{2} y=3$ and $x+x y=4$.
9. Find all real values of x for which

$$
\frac{1}{\sqrt{x}+\sqrt{x-2}}+\frac{1}{\sqrt{x+2}+\sqrt{x}}=\frac{1}{4} .
$$

10. Let $\mathrm{Q}(\mathrm{x})=x^{2}+2 x+3$, and suppose that $P(x)$ is a polynomial such that

$$
P(Q(x))=x^{6}+6 x^{5}+18 x^{4}+32 x^{3}+35 x^{2}+22 x+8 .
$$

Compute $P(2)$.
11. Find the largest real number λ such that $a^{2}+b^{2}+c^{2}+d^{2} \geq a b+\lambda b c+c d$ for all real numbers a, b, c, d.
12. Let a, b, c, x be reals with $(a+b)(b+c)(c+a) \neq 0$ that satisfy

$$
\frac{a^{2}}{a+b}=\frac{a^{2}}{a+c}+20, \frac{b^{2}}{b+c}=\frac{b^{2}}{b+a}+14, \text { and } \frac{c^{2}}{c+a}=\frac{c^{2}}{c+b}+x
$$

Compute x.
13. If a and b satisfy the equations $a+\frac{1}{b}=4$ and $\frac{1}{a}+b=\frac{16}{15}$, determine the product of all possible values of $a b$.
14. Find the sum of the coefficients of the polynomial $P(x)=x^{4}-29 x^{3}+a x^{2}+b x+c$, given that $P(5)=11, P(11)=17$, and $P(17)=23$.
15. Let $f(x)=x^{2}+6 x+7$. Determine the smallest possible value of $f(f(f(f(x))))$ over all real numbers x.

2 Sources

1. 2008 November Harvard MIT Math Tournament General Problem 7
2. 2008 November Harvard MIT Math Tournament General Problem 9
3. 2008 November Harvard MIT Math Tournament General Problem 10
4. 2009 November Harvard MIT Math Tournament General Problem 2
5. 2009 November Harvard MIT Math Tournament General Problem 6
6. 2010 November Harvard MIT Math Tournament General Problem 5
7. 2010 November Harvard MIT Math Tournament General Problem 6
8. 2011 November Harvard MIT Math Tournament General Problem 1
9. 2011 November Harvard MIT Math Tournament General Problem 5
10. 2012 November Harvard MIT Math Tournament General Problem 2
11. 2013 November Harvard MIT Math Tournament General Problem 7
12. 2014 November Harvard MIT Math Tournament General Problem 8
13. 2016 November Harvard MIT Math Tournament General Problem 1
14. 2011 November Harvard MIT Math Tournament Team Problem 3
15. 2014 November Harvard MIT Math Tournament Team Problem 2
