Algebra Handout \#6

Walker Kroubalkian

February 27, 2017

1 Problems

1. Find x such that $\sqrt{c+\sqrt{c-x}}=x$ when $c=4$.
2. The tetranacci numbers are defined by the recurrence $T_{n}=T_{n-1}+T_{n-2}+T_{n-3}+T_{n-4}$ and $T_{0}=T_{1}=T_{2}=0$ and $T_{3}=1$. Given that $T_{9}=29$ and $T_{14}=773$, calculate T_{15}.
3. What is the sum of the infinite series $\frac{20}{3}+\frac{17}{9}+\frac{20}{27}+\frac{17}{81}+\frac{20}{243}+\frac{17}{729}+\ldots$?
4. If $x y=15$ and $x+y=11$, calculate the value of $x^{3}+y^{3}$.
5. Square S is the unit square with vertices at $(0,0),(0,1),(1,0)$, and $(1,1)$. We choose a random point (x, y) inside S and construct a rectangle with length x and width y. What is the average of $\lfloor p\rfloor$ where p is the perimeter of the rectangle? $\lfloor x\rfloor$ is the greatest integer less than or equal to x.
6. Find all solutions to $3^{x}-9^{x-1}=2$.
7. Find the value of

$$
\frac{1}{2}+\frac{4}{2^{2}}+\frac{9}{2^{3}}+\frac{16}{2^{4}}+\cdots
$$

8. Find the value of y such that the following equation has exactly three solutions.

$$
||x-1|-4|=y
$$

9. Compute

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k}}{(2 k-1)(2 k+1)}
$$

10. Consider the function $f(x, y, z)=(x-y+z, y-z+x, z-x+y)$ and denote by $f^{(n)}(x, y, z)$ the function f applied n times to the tuple (x, y, z). Let r_{1}, r_{2}, r_{3} be the three roots of the equation $x^{3}-4 x^{2}+12=0$ and let $g(x)=x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ be the cubic polynomial with the tuple $f^{(3)}\left(r_{1}, r_{2}, r_{3}\right)$ as roots. Find the value of a_{1}.
11. A function f with its domain on the positive integers $\mathbb{N}=\{1,2, \ldots\}$ satisfies the following conditions:
(a): $f(1)=2017$.
(b): $\sum_{i=1}^{n} f(i)=n^{2} f(n)$, for every positive integer $n>1$.

What is the value of $f(2017)$?
12. Suppose that there is a set of 2016 positive numbers, such that both their sum, and the sum of their reciprocals are equal to 2017. Let x be one of those numbers. Find the maximum possible value of $x+\frac{1}{x}$.
13. Define the operation $a @ b$ to be $3+a b+a+2 b$. There exists a number x such that $x @ b=1$ for all b. Find x.
14. The distinct rational numbers $-\sqrt{-x}, x$, and $-x$ form an arithmetic sequence in that order. Determine the value of x.
15. Let A, B, and k be integers, where k is positive and the greatest common divisor of A, B, and k is 1 . Define $x \# y$ by the formula $x \# y=\frac{A x+B y}{k x y}$. If $8 \# 4=\frac{1}{2}$ and $3 \# 1=\frac{13}{6}$, determine the sum $A+B+k$.

2 Sources

1. 2016 Berkeley Math Tournament Fall Team Problem 20
2. 2016 Berkeley Math Tournament Fall Team Problem 15
3. 2017 Berkeley Math Tournament Spring Individual Problem 7
4. 2017 Berkeley Math Tournament Spring Individual Problem 8
5. 2017 Berkeley Math Tournament Spring Individual Problem 12
6. 2017 Berkeley Math Tournament Spring Analysis Problem 2
7. 2017 Berkeley Math Tournament Spring Analysis Problem 4
8. 2017 Berkeley Math Tournament Spring Analysis Problem 5
9. 2017 Berkeley Math Tournament Spring Analysis Problem 7
10. 2017 Berkeley Math Tournament Spring Analysis Problem 6
11. 2017 Berkeley Math Tournament Spring Team Problem 8
12. 2017 Berkeley Math Tournament Spring Team Problem 14
13. 2017 Berkeley Math Tournament Fall Individual Problem 9
14. 2017 Berkeley Math Tournament Fall Individual Problem 11
15. 2017 Berkeley Math Tournament Fall Individual Problem 17
