Algebra Handout \# 7 Answers and Solutions

Walker Kroubalkian
April 3, 2018

1 Answers

1. $\$ 2.60$
2. 12
3. $\frac{13}{7}$
4. 2019
5. 18
6. 113
7. 36
8. 3
9. 4
10. $\frac{11}{14}$
11. 40
12. 18
13. $\sqrt[6]{3}$
14. $\frac{1023}{1024}$
15. $-\frac{9}{4}$

2 Solutions

1. At the grocery store, 3 avocados and 2 pineapples cost $\$ 8.80$, while 5 avocados and 3 pineapples cost $\$ 14.00$. How much do 1 avocado and 1 pineapple cost in dollars?
Solution: Let the cost of an avocado be a and let the cost of a pineapple be p. It follows that $3 a+2 p=8.80$ and $5 a+4 p=14.00$. Subtracting the first equation from the second tells us that $2 a+2 p=5.20$. Dividing this equation by 2 tells us that the cost of 1 avocado and 1 pineapple is $\$ 2.60$.
2. Let a, b, c, d be an increasing sequence of numbers such that a, b, c forms a geometric sequence and b, c, d forms an arithmetic sequence. Given that $a=8$ and $d=24$, what is b ?
Solution: By the given information, we know that $b^{2}=a c$ and $b+d=2 c$. Plugging the second
equation into the first tells us that $b^{2}=\frac{a(b+d)}{2}$. It follows that $2 b^{2}=8 b+192$, or $b^{2}=4 b+96$. This equation can be factored as $(b-12)(b+8)=0$. Because this is an increasing sequence, it follows that $b=12$.
3. Given that the roots of the polynomial $x^{3}-7 x^{2}+13 x-7=0$ are r, s, t, compute the value of $\frac{1}{r}+\frac{1}{s}+\frac{1}{t}$.
Solution: Notice that we wish to calculate $\frac{r s+r t+s t}{r s t}$. By Vieta's Formulas, we know that $r s t=7$ and $r s+r t+s t=13$. Therefore our answer is $\frac{13}{7}$.
4. Let $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \ldots$ be a geometric progression with positive ratio such that $a_{1}>1$ and $\left(a_{1357}\right)^{3}=a_{34}$. Find the smallest integer n such that $a_{n}<1$.
Solution: Let $a_{1}=A$ and let the common ratio be r. It follows that $a_{1357}=A r^{1356}$ and $a_{34}=A r^{33}$. It follows that $A^{3} r^{4068}=A r^{33}$, or $A^{2}=r^{-4035}$. It follows that $A=r^{-\frac{4035}{2}}$. Clearly, we must have that $r<1$, so it follows that $A r^{2018}=r^{\frac{4036}{2}-\frac{4035}{2}}=r^{\frac{1}{2}}$ is the first term which is less than 1 , and therefore our answer is $n=2019$.
5. Let x, y, z be non-negative real numbers satisfying $x y z=\frac{2}{3}$. Compute the minimum value of

$$
x^{2}+6 x y+18 y^{2}+12 y z+4 z^{2} .
$$

Solution: This expression can be rewritten as $(x+3 y)^{2}+(3 y+2 z)^{2}$. By the Cauchy Schwarz Inequality, we must have that $\left((x+3 y)^{2}+(3 y+2 z)^{2}\right) \cdot\left(1^{2}+1^{2}\right) \geq(x+3 y+3 y+2 z)^{2}$. Therefore, we wish to find the minimum value of $\frac{(x+6 y+2 z)^{2}}{2}$. By the AM-GM inequality, we know that $\frac{x+6 y+2 z}{3} \geq \sqrt[3]{12 x y z}=2$. It follows that the minimum value of our expression is $\frac{(2 \cdot 3)^{2}}{2}=18$.
6. Define $\{x\}=x-\lfloor x\rfloor$, where $\lfloor x\rfloor$ denotes the largest integer not exceeding x. If $|x| \leq 8$, find the number of real solutions to the equation

$$
\{x\}+\left\{x^{2}\right\}=1
$$

Solution: Let $x=i+f$ where i is an integer and $0 \leq f<1$. It follows that the given equation is equivalent to $\left\{i^{2}+2 i f+f^{2}\right\}=\left\{2 i f+f^{2}\right\}=1-f$. This statement is equivalent to letting $2 i f+f^{2}-(1-f)$ be an integer, or letting $2 i f+f^{2}+f$ be an integer. From here, it is a simple matter of plugging in every integer i in the range $-8 \leq i<8$ and solving for fractional parts f. When $i=-8$, we want $f^{2}-15 f$ to be an integer. By the intermediate value theorem (IVT), this will take on every value between 0 and -14 with the exceptions of 0 and -14 as they correspond to when $f=0$ and $f=1$, respectively, so we have 13 solutions when $i=-8$. When $i=-7$, we want $f^{2}-13 f$ to be an integer. We can easily find that there are 11 solutions in this case. Continuing this pattern, we find that there are a total of $13+11+9+7+5+3+1+0+1+3+5+7+9+11+13+15=7^{2}+8^{2}=113$.
7. Katy only owns two types of books: comic books and nature books. $\frac{1}{3}$ of her books are comic books. After going to a booksale, she buys 20 more comic books, so $\frac{4}{7}$ of her books are now comic books. How many books did she have originally?
Solution: Let Katy own c comic books and b total books before the sale. It follows that $\frac{c}{b}=\frac{1}{3}$ and $\frac{c+20}{b+20}=\frac{4}{7}$. It follows that $b=3 c$ and $7 c+140=4 b+80$. Substituting the first equation in the second tells us that $5 c=60$, or $c=12$. Therefore, $b=3 \cdot 12=36$.
8. Let $f(x)=x^{3}-n_{1} x^{2}+\left(n_{2}-k^{2}\right) x-\left(n_{3}-k^{4}\right)$. Suppose that n_{1}, n_{2}, and n_{3} form a geometric sequence with common ratio k and that the roots of f are nonzero and form an arithmetic sequence with common difference also k. Find k.

Solution: Let $n_{1}=N$ and let the roots be $a, a-k$, and $a+k$. It follows that $3 a=N$, $3 a^{2}-k^{2}=N k-k^{2}$, and $a^{3}-a k^{2}=N k^{2}-k^{4}$. Plugging the first equation into the other two equation gives us that $3 a^{2}-k^{2}=3 a k-k^{2}$ and $a^{3}-a k^{2}=3 a k^{2}-k^{4}$, or $3 a^{2}=3 a k$ and $a^{3}=4 a k^{2}-k^{4}$. The first equation tells us that $a=k$, and plugging this into the second equation tells us that $k^{3}=4 k^{3}-k^{4}$. Because k is nonzero, we know that $k=3$.
9. If a, b, c are real numbers with $a-b=4$, find the maximum value of $a c+b c-c^{2}-a b$.

Solution: Notice that the given expression is equivalent to $(c-b)(a-c)$. If we let $c-b=x$ and $a-c=y$, then we have that $x+y=c-b+a-c=a-b=4$. Because it is impossible for both x and y to be negative, their product will be maximized when each of x and y are non-negative. It follows by AM-GM that the maximum value of $x y$ is $\left(\frac{x+y}{2}\right)^{2}=2^{2}=4$.
10. If $\frac{1}{x}+\frac{1}{y}=\frac{1}{2}$ and $\frac{1}{x+1}+\frac{1}{y+1}=\frac{3}{8}$, compute $\frac{1}{x-1}+\frac{1}{y-1}$.

Solution: We know $\frac{x+y}{x y}=\frac{1}{2}$ and $\frac{x+y+2}{x y+x+y+1}=\frac{3}{8}$, and we wish to calculate $\frac{x+y-2}{x y-x-y+1}$. From the given equations, we know that $2 x+2 y=x y$ and $8 x+8 y+16=3 x y+3 x+3 y+3$. Substituting the second equation in the first gives us $x+y=13$, and it follows that $x y=26$. Therefore our answer is $\frac{13-2}{26-13+1}=\frac{11}{14}$.
11. Connie owns a small farm and grows mangos and pineapples. After one harvest she increased her mango supply by 50% but also sold half of her pineapples. Given that she has a net loss of 10 fruit after the harvest, and that she has the same number of mangos as pineapples after the harvest, how much fruit did she initially have?

Solution: Let Connie's intial number of mangos and initial number of pineapples be m and p, respectively. We must have that $\frac{3}{2} m+\frac{1}{2} p-(m+p)=\frac{m-p}{2}=-10$ and that $\frac{3}{2} m=\frac{1}{2} p$. The first equation tells us that $m=p-20$ and the second equation tells us that $3 m=p$. It follows that $2 m=20$ and $m=10$, and therefore $p=30$. It follows that she initially had $30+10=40$ fruit.
12. For some real number c, the graphs of the equation $y=|x-20|+|x+18|$ and the line $y=x+c$ intersect at exactly one point. What is c ?
Solution: Notice that the given function has a slope of -2 when $x<-18$, the function has a slope of 0 when $-18<x<20$, and the function has a slope of 2 when $20<x$. It follows that because the function's rate of change is non decreasing, we must have that our line $y=x+c$ intersects it at the point where its slope becomes greater than 1. It follows that the two graphs must intersect at $x=20$, and this gives us the intersection point $(20,38)$. It follows that $c=38-20=18$.
13. Compute the positive real number x satisfying

$$
x^{2 x^{6}}=3
$$

Solution: We will begin by taking $\log _{3}$ of both sides. Doing so gives us the equation $2 x^{6} \cdot \log _{3} x=1$. If we let $\log _{3} x=a$, then we know that $x=3^{a}$ and it follows that $2 a \cdot 3^{6 a}=1$. By inspection, we can notice that if $2 a=\frac{1}{3}$, then the equation is true. It follows that $a=\frac{1}{6}$, and therefore our answer is $3^{\frac{1}{6}}=\sqrt[6]{3}$.
14. John has a 1 liter bottle of pure orange juice. He pours half of the contents of the bottle into a vat, fills the bottle with water, and mixes thoroughly. He then repeats this process 9 more times. Afterwards, he pours the remaining contents of the bottle into the vat. What fraction of the liquid in the vat is now water?

Solution: Notice that each time this operation is performed, exactly $\frac{1}{2}$ of the orange juice is lost. Therefore, at the end of the 10 operations, only $\left(\frac{1}{2}\right)^{10}=\frac{1}{1024}$ of the orange juice remains, and it follows that our answer is $\frac{1023}{1024}$.
15. Suppose a real number $x>1$ satisfies

$$
\log _{2}\left(\log _{4} x\right)+\log _{4}\left(\log _{16} x\right)+\log _{16}\left(\log _{2} x\right)=0 .
$$

Compute

$$
\log _{2}\left(\log _{16} x\right)+\log _{16}\left(\log _{4} x\right)+\log _{4}\left(\log _{2} x\right) .
$$

Solution: Let $x=2^{2^{a}}$ for some real number a. Then we have that $a-1+\frac{a-2}{2}+\frac{a}{4}=0$ or $7 a=8$ or $a=\frac{7}{8}$. We wish to calculate $a-4+\frac{a-1}{4}+\frac{a}{2}$. Plugging in $a=\frac{7}{8}$, we get an answer of $\frac{7 a-17}{4}=-\frac{9}{4}$.

3 Sources

1. 2018 Stanford Math Tournament Algebra Problem 1
2. 2018 Stanford Math Tournament Algebra Problem 2
3. 2018 Stanford Math Tournament Algebra Problem 3
4. 2018 Stanford Math Tournament Algebra Problem 5
5. 2018 Stanford Math Tournament Algebra Problem 7
6. 2018 Stanford Math Tournament Algebra Problem 8
7. 2018 Stanford Math Tournament General Problem 4
8. 2018 Stanford Math Tournament General Problem 25
9. 2018 Stanford Math Tournament Algebra Tiebreaker Problem 1
10. 2018 Stanford Math Tournament Algebra Tiebreaker Problem 2
11. 2018 Stanford Math Tournament General Tiebreaker Problem 1
12. 2018 Harvard MIT Math Tournament February Algebra and Number Theory Problem 1
13. 2018 Harvard MIT Math Tournament February Algebra and Number Theory Problem 2
14. 2018 Harvard MIT Math Tournament February Guts Problem 2
15. 2018 Harvard MIT Math Tournament February Guts Problem 8
