Algebra Handout #4 Answers and Solutions Walker Kroubalkian December 19, 2017

1 Answers

1. -342. 4 3. 3614. 10 5. $7 \cdot 3^{2014}$ 6. 21 7. 22 8. $0, \log_2 3$ 9. $\frac{7 - \sqrt{17}}{2}$ 10. $\frac{19}{12}$ 11. 289 12. 252 13. 1000000 14. 3627 15. 3

2 Solutions

1. Consider the graph of $f(x) = x^3 + x + 2014$. A line intersects this cubic at three points, two of which have x-coordinates 20 and 14. Find the x-coordinate of the third intersection point.

Solution: Notice that the x-coordinates of the intersection points must be the solutions to the equation $x^3 + x + 2014 = ax + b$ for some constants a and b. By Vieta's Equations, the sum of these coordinates must be 0. It follows that our answer is $0 - 20 - 14 = \boxed{-34}$

2. Usually, spaceships have 6 wheels. However, there are more advanced spaceships that have 9 wheels. Aliens invade Earth with normal spaceships, advanced spaceships, and, surprisingly, bicycles (which have 2 wheels). There are 10 vehicles and 49 wheels in total. How many bicycles are there?

Solution: Let s be the number of spaceships, let a be the number of advanced spaceships, and let

b be the number of bicycles. It follows that s + a + b = 10 and 6s + 9a + 2b = 49. Subtracting the first equation twice from the second equation gives us 4s + 7a = 29. It follows that the only solution where $0 \le s, a$ and $s + a \le 10$ is s = 2, a = 4. It follows that $b = 10 - 2 - 4 = \boxed{4}$.

3. There is a square configuration of desks. It is known that one can rearrange these desks such that it has 7 fewer rows but 10 more columns, with 13 desks remaining. How many desks are there in the square configuration?

Solution: Let the number of rows in the square configuration be s. It follows that $s^2 = (s-7)(s+10) + 13 = s^2 + 3s - 57$. It follows that 3s = 57, and therefore s = 19. It follows that our answer is $19^2 = \boxed{361}$.

4. Suppose three boba drinks and four burgers cost 28 dollars, while two boba drinks and six burgers cost \$37.70. If you paid for one boba drink using only pennies, nickels, dimes, and quarters, determine the least number of coins you could use.

Solution: Let the cost of a boba drink be o and let the cost of a burger be b. It follows that 3o+4b = 28 and 2o+6b = 37.70. Subtracting double the second equation from three times the first equation gives us 5o = 8.60. It follows that o = 1.72. The minimum number of coins to express this value is 10: we can use 6 quarters, 2 dimes, and 2 pennies.

5. Suppose a_1, a_2, \dots and b_1, b_2, \dots are sequences satisfying $a_n + b_n = 7, a_n = 2b_{n-1} - a_{n-1}$, and $b_n = 2a_{n-1} - b_{n-1}$, for all *n*. If $a_1 = 2$, find $(a_{2014})^2 - (b_{2014})^2$.

Solution: We can notice that $a_n + b_n = 2b_{n-1} - a_{n-1} + 2a_{n-1} - b_{n-1} = a_{n-1} + b_{n-1}$. It follows that $a_{2014} + b_{2014} = a_1 + b_1 = 7$. (I'm guessing they meant to say $a_1 + b_1 = 7$, but they actually already gave us this information in the original problem). We can also notice that $a_n - b_n = 3(b_{n-1} - a_{n-1}) = -3(a_{n-1} - b_{n-1})$. It follows that $a_{2014} - b_{2014} = (-3)^{2013}(a_1 - b_1) = 3^{2014}$. Therefore our answer is $(a_{2014} + b_{2014}) \cdot (a_{2014} - b_{2014}) = \boxed{7 \cdot 3^{2014}}$.

6. Suppose that $f(x) = \frac{x}{x^2 - 2x + 2}$ and $g(x_1, x_2, ..., x_7) = f(x_1) + f(x_2) + \cdots + f(x_7)$. If $x_1, x_2, ..., x_7$ are non-negative real numbers with sum 5, determine for how many tuples $(x_1, x_2, ..., x_7)$ does $g(x_1, x_2, ..., x_7)$ obtain its maximal value.

Solution: We will proceed with the infamous Tangent-Line Trick. Given that f(x) can be rewritten as $f(x) = \frac{x}{(x-1)^2+1}$, we may be inclined to take the derivative of f(x) at x = 1. Doing so gives us $\frac{d}{dx} = \frac{2-x^2}{(x^2-2x+2)^2}$, and it follows that the derivative at x = 1 is 1. It follows that the tangent line to f(x) at x = 1 is y = x, and this makes us suspect that $f(x) \le x$. We can check this guess by rearranging the inequality to give us $x^3 - 2x^2 + x \ge 0$, or $x(x-1)^2 \ge 0$, which is true for all nonnegative values x with equality when x = 0 or x = 1. It follows that the 7-tuples which maximize $g(x_1, ..., x_7)$ consist of 5 1's and 2 0's. It follows that the number of 7-tuples which maximize this sum is $\binom{7}{2} = \boxed{21}$.

7. Let n be the smallest positive integers such that the number obtained by taking ns rightmost digit (decimal expansion) and moving it to be the leftmost digit is 7 times n. Determine the number of digits in n.

Solution: Let n = 10x + a where $10^b \le x < 10^{b+1}$ and $0 \le a < 10$. It follows that $7n = 10^{b+1} \cdot a + x$. Therefore, $70x + 7a = 10^{b+1}a + x \to 69x = (10^{b+1} - 7)a$. Notice that if a = 3, then this equation can hold whenever $10^{b+1} \equiv 7 \pmod{23}$. The smallest value of b which satisfies this property is b = 20, as $10^{-1} \equiv 7 \pmod{23}$ and $10^{11} \equiv 22 \pmod{23}$ and by Euler's Totient Theorem, $10^{22} \equiv 1$ (mod 23). Therefore, b = 20, and n has b + 2 = |22| digits.

8. Find all real numbers x such that $4^x - 2^{x+2} + 3 = 0$.

Solution: Let $2^x = a$. It follows that $a^2 - 4a + 3 = 0$, or a = 1 or a = 3. Therefore, the only solutions for x are $x = 0, \log_2 3$

9. Find the smallest positive value of x such that $x^3 - 9x^2 + 22x - 16 = 0$.

Solution: We can notice that if the cubic is f(x), f(2) = 0. Therefore, (x - 2) is a factor of f(x)and f(x) can be written as $f(x) = (x-2)(x^2 - 7x + 8)$. By the Quadratic Formula, the solutions to the quadratic are $\frac{7\pm\sqrt{17}}{2}$. We can check that the minimum solution is therefore $\left|\frac{7-\sqrt{17}}{2}\right|$

10. Find f(2) given that f is a real-valued function that satisfies the equation

$$4f(x) + (\frac{2}{3})(x^2 + 2)f(x - \frac{2}{x}) = x^3 + 1.$$

Solution: Notice that by plugging x = 1 and x = -1 into the given equation, we get 4f(1) + 12f(-1) = 2 and 4f(-1) + 2f(1) = 0. It follows that $2f(1) = \frac{4}{3}$, or $f(1) = \frac{2}{3}$. Plugging x = 2 into the original equation gives us 4f(2) + 4f(1) = 9. It follows that $4f(2) = \frac{19}{3}$, and therefore $f(2) = \boxed{\frac{19}{12}}.$

11. Let $f(x) = x^2 + 18$ have roots r_1 and r_2 , and let $g(x) = x^2 - 8x + 17$ have roots r_3 and r_4 . If $h(x) = x^4 + ax^3 + bx^2 + cx + d$ has roots $r_1 + r_3, r_1 + r_4, r_2 + r_3$, and $r_2 + r_4$, then find h(4).

Solution: We wish to calculate $(4-r_1-r_3)(4-r_1-r_4)(4-r_2-r_3)(4-r_2-r_4)$. We can notice that r_1 and r_2 are in some order $3i\sqrt{2}$, $-3i\sqrt{2}$ and r_3 and r_4 are in some order 4+i, 4-i. It follows that the expression we wish to find is equivalent to $(i+3i\sqrt{2})\cdot(i-3i\sqrt{2})(-i+3i\sqrt{2})(-i-3i\sqrt{2}) = 17^2 = 289$

12. Suppose that $x^{10} + x + 1 = 0$ and $x^{100} = a_0 + a_1x + ... + a_9x^9$. Find a_5 .

Solution: Notice that $x^{100} = (x^{10})^{10} = (x+1)^{10}$. It follows that the given 9th degree expression is $(x+1)^{10} - x^{10} - x - 1$. The coefficient of the term with a degree of 5 in the expansion of this expression is $\binom{10}{5} = \boxed{252}$.

13. Let x be a real number such that $10^{\frac{1}{x}} = x$. Find $(x^3)^{2x}$.

Solution: We wish to compute $x^{6x} = (10^{\frac{1}{x}})^{6x} = 10^6 = 1000000$

14. Let f be a function such that f(x+y) = f(x) + f(y) for all x and y. Assume f(5) = 9. Compute f(2015).

Solution: Notice that f(5a) = f(5) + f(5a - 5). It follows that f(5a) = 9a. Therefore our answer is $\frac{2015 \cdot 9}{5} = 3627$

15. Let x, y be non-zero solutions to $x^2 + xy + y^2 = 0$. Find

$$\frac{x^{2016} + (xy)^{1008} + y^{2016}}{(x+y)^{2016}}$$

Solution: Notice that if $x^2 + xy + y^2 = 0$, then $(x - y)(x^2 + xy + y^2) = x^3 - y^3 = 0$. It follows that $x^3 = y^3$. Therefore the given expression can be rewritten as $3(\frac{x}{x+y})^{2016}$. We can find that $x = y(\frac{-1+\sqrt{3}}{2})$. It follows that $x + y = y(\frac{1+\sqrt{3}}{2})$. It follows that x has the same absolute value as x + y, and the difference between their arguments is $\frac{\pi}{3}$. Because 2016 is a multiple of 6, it follows that $3(\frac{x}{x+y})^{2016} = \boxed{3}$.

3 Sources

1. 2014 Berkeley Math Tournament Fall Individual Problem 16

- 2. 2014 Berkeley Math Tournament Fall Individual Problem 12
- 3. 2014 Berkeley Math Tournament Fall Team Problem 11
- 4. 2014 Berkeley Math Tournament Spring Individual Problem 3
- 5. 2014 Berkeley Math Tournament Spring Individual Problem 9
- 6. 2014 Berkeley Math Tournament Spring Individual Problem 14
- 7. 2014 Berkeley Math Tournament Spring Individual Problem 16
- 8. 2014 Berkeley Math Tournament Spring Analysis Problem 1
- 9. 2014 Berkeley Math Tournament Spring Analysis Problem 2
- 10. 2014 Berkeley Math Tournament Spring Analysis Problem 6
- 11. 2014 Berkeley Math Tournament Spring Analysis Problem 7
- **12.** 2014 Berkeley Math Tournament Spring Team Problem 11
- 13. 2015 Berkeley Math Tournament Spring Individual Problem 4
- 14. 2015 Berkeley Math Tournament Spring Team Problem 1
- 15. 2015 Berkeley Math Tournament Fall Team Problem 13