Algebra Handout #5 Answers and Solutions Walker Kroubalkian February 6, 2018

1 Answers

1. 2,033,136 2. (5,-2,1)3. 3 4. 8 5. 2 6. -118 7. 552 8. 2 9. $\sqrt[3]{9} - 2$ 10. $-\frac{1}{2}, \frac{1}{2}\frac{3}{2}$ 11. $\frac{20}{7}$ 12. (16,2) 13. -1 14. 16 15. 73

2 Solutions

1. Let $g(x) = 1 + 2x + 3x^2 + 4x^3 + \dots$ Find the coefficient of x^{2015} of $f(x) = \frac{g(x)}{1-x}$. Solution: Notice that g(x) is equivalent to the expansion of $(1 + x + \dots)^2 = (\frac{1}{1-x})^2$. It follows that $f(x) = (\frac{1}{1-x})^3$. Therefore, we wish to find the number of triples of nonnegative integers (a, b, c) such that a + b + c = 2015. By Stars and Bars, this is just $\binom{2017}{2} = \boxed{2,033,136}$.

2. Find all integer solutions to

$$x^{2} + 2y^{2} + 3z^{2} = 36,$$

 $3x^{2} + 2y^{2} + z^{2} = 84,$

$$xy + xz + yz = -7.$$

Solution: Adding the first two equations and dividing by 4, we get $x^2 + y^2 + z^2 = 30$. Combining this with the third equation, we get $x^2 + y^2 + z^2 + 2xy + 2xz + 2yz = (x + y + z)^2 = 16$. It follows that x + y + z = 4. Subtracting the first equation from the second equation, we get $x^2 - z^2 = 24$. Therefore, x + z is an integer factor of 24, and because 24 is even, we must also have x + z is even. Therefore, x + z is among the set $\{-2, -4, -6, -8, -12, -24, 2, 4, 6, 8, 12, 24\}$. We also know that xz + y(x + z) = -7. Because x + z is even, we know xz is odd, and therefore both x and z are odd. Just using the facts that x + z is an even factor of 24, x + y + z = 4, and xy + y(x + z) = -7, we can find that the only value of x + z which works x + z = 6. This produces the two triples (x, y, z) = (1, -2, 5) and (5, -2, 1). Checking, we find that only (x, y, z) = (5, -2, 1) works.

3. Let $\{a_n\}$ be a sequence of real numbers with $a_1 = -1, a_2 = 2$ and for all $n \ge 3$,

$$a_{n+1} - a_n - a_{n+2} = 0.$$

Find $a_1 + a_2 + a_3 + \dots + a_{2015}$.

Solution: Rewriting the recurrence as $a_{n+2} = a_{n+1} - a_n$, we can manually find that $a_3 = 3$, $a_4 = 1$, $a_5 = -2$, $a_6 = -3$, $a_7 = -1$, and $a_8 = 2$, with the sequence repeating every six terms. Notice that every block of 6 consecutive terms adds to 0, so our answer is $a_1 + a_2 + a_3 + a_4 + a_5 = -1 + 2 + 3 + 1 - 2 = 3$.

4. Let x and y be real numbers satisfying the equation $x^2 - 4x + y^2 + 3 = 0$. If the maximum and minimum values of $x^2 + y^2$ are M and m respectively, compute the numerical value of M - m.

Solution: Notice that the given equation is equivalent to $(x - 2)^2 + y^2 = 1$, an equation which produces a circle of radius 1 centered at (2,0). It follows that the maximum value of $x^2 + y^2$ corresponds to the point on this circle which is furthest from the origin, or (3,0), and therefore M = 9. Similarly, m corresponds to the point (1,0) and therefore m = 1. It follows that $M - m = \boxed{8}$.

5. Given integers a, b, c satisfying

$$abc + a + c = 12$$

 $bc + ac = 8$
 $b - ac = -2,$

what is the value of a?

,

Solution: Adding the last two equations, we get b(c + 1) = 6. Therefore, c + 1 is a factor of 6. By the second equation we know that c is a factor of 8, so it follows that c = -4, -2, 1 or 2. Plugging in each of these values of c and solving tells us that the only solution (a, b, c) in integers is (a, b, c) = (2, 2, 2), and therefore $a = \boxed{2}$.

6. Consider the following linear system of equations.

$$1 + a + b + c + d = 1$$

$$16 + 8a + 4b + 2c + d = 2$$

$$81 + 27a + 9b + 3c + d = 3$$

$$256 + 64a + 16b + 4c + d = 4$$

Find a - b + c - d.

Solution: Consider the polynomial $f(x) = x^4 + ax^3 + bx^2 + cx + d$. The given equations tell us that for $1 \le x \le 4$, f(x) = x. Therefore, f(x) = (x - 1)(x - 2)(x - 3)(x - 4) + x. Notice that f(-1) = 1 - a + b - c + d = 119. Therefore a - b + c - d = -118.

7. Positive integers x, y, z satisfy $(x + yi)^2 - 46i = z$. What is x + y + z?

Solution: The given equation tells us that 2xy = 46, or xy = 23 and that $x^2 - y^2 = z$. Because z is positive, we must have x > y, and therefore x = 23 and y = 1 and z = 528. It follows that x + y + z = 529 + 23 = 522.

8. Define $P(\tau) = (\tau + 1)^3$. If x + y = 0, what is the minimum possible value of P(x) + P(y)?

Solution: We wish to find the minimum possible value of $(1 + x)^3 + (1 - x)^3$. This is equivalent to the minimum possible value of $6x^2 + 2$ which is clearly $\boxed{2}$ at x = 0.

9. Simplify
$$\frac{1}{\sqrt[3]{81} + \sqrt[3]{72} + \sqrt[3]{64}}$$

Solution: The given expression is equivalent to $\frac{1}{4+2\sqrt[3]{9}+\sqrt[3]{9^2}}$. If we let a = 2 and $b = \sqrt[3]{9}$, then the given expression is equivalent to $\frac{1}{a^2+ab+b^2} = \frac{a-b}{a^3-b^3}$. Substituting our values of a and b into this new expression gives us an answer of $\frac{\sqrt[3]{9}-2}{1} = \frac{\sqrt[3]{9}-2}{1}$.

10. The roots of the polynomial $x^3 - \frac{3}{2}x^2 - \frac{1}{4}x + \frac{3}{8} = 0$ are in arithmetic progression. What are they?

Solution: Let the roots be a, b, and c where a < b < c, and let their common difference be d such that a + d = b and b + d = c. It follows that $a + b + c = (b - d) + b + (b + d) = 3b = \frac{3}{2}$ by Vieta's. Therefore $b = \frac{1}{2}$ is a root. Factoring this out, we get that the polynomial is equivalent to $(x - \frac{1}{2})(x^2 - x - \frac{3}{4})$. Using the Quadratic Formula on the second factor, we get that $x = \frac{3}{2}$ and $x = -\frac{1}{2}$ are also roots. Therefore our answer is $\boxed{-\frac{1}{2}, \frac{1}{2}, \frac{3}{2}}$.

11. The quartic equation $x^4 + 2x^3 - 20x^2 + 8x + 64$ contains the points (-6, 160), (-3, -113), and (2, 32). A cubic $y = ax^3 + bx + c$ also contains these points. Determine the *x*-coordinate of the fourth intersection of the cubic with the quartic.

Solution: The given information is equivalent to the expression $x^4 + (2-a)x^3 - 20x^2 + (8-b)x + 64 - c = (x+6)(x+3)(x-2)(x-d) = 0$ where d is the x-coordinate of the fourth intersection point. Equating their x^2 terms gives us -20 = 18 - 6 - 12 - 6d - 3d + 2d or -20 = -7d. It follows that the fourth x-coordinate is $\boxed{\frac{20}{7}}$.

12. Find an integer pair of solutions (x, y) to the following system of equations.

$$\log_2(y^x) = 16$$
$$\log_2(x^y) = 8$$

Solution: Notice that the given equations are equivalent to $x \log_2 y = 16$ and $y \log_2 x = 8$. If we let $x = 2^a$ and $y = 2^b$, then it follows that $b \cdot 2^a = 16$ and $a \cdot 2^b = 8$. We can notice that the pair (a, b) = (4, 1) satisfies this equation, and therefore the pair $(x, y) = \boxed{(16, 2)}$ satisfies the original equation.

13. Define a_n such that $a_1 = \sqrt{3}$ and for all integers $i, a_{i+1} = a_i^2 - 2$. What is a_{2016} ?

Solution: Notice that $a_2 = 1$, and $a_3 = -1$. Notice that no matter how many times the function $f(x) = x^2 - 2$ is applied to x = -1, we will always have f(-1) = -1, and therefore for all $n \ge 3$, $a_n = -1$. It follows that $a_{2016} = \boxed{-1}$.

14. Let s_1, s_2, s_3 be the three roots of $x^3 + x^2 + \frac{9}{2}x + 9$.

$$\prod_{i=1}^{3} (4s_i^4 + 81)$$

can be written as $2^a 3^b 5^c$. Find a + b + c.

Solution: Consider the cubic $x^3 - dx^2 + ex - f$ with roots g, h, and i. By Vieta's Formulas, we know g + h + i = d, gh + gi + hi = e, and ghi = f. It follows that $g^2 + h^2 + i^2 = d^2 - 2e$, $g^2h^2 + g^2i^2 + h^2i^2 = e^2 - 2df$, and $g^2h^2i^2 = f^2$. It follows that the cubic with roots g^2 , h^2 , and i^2 is $x^3 - (d^2 - 2e)x^2 + (e^2 - 2df)x - f^2$. Using this knowledge, we can find that the cubic with roots s_1^2, s_2^2 , and s_3^2 is $x^3 + 8x^2 + \frac{9}{4}x - 81$ and the cubic with roots s_1^4, s_2^4 , and s_3^4 is $f(x) = x^3 - \frac{119}{2}x^2 + \frac{20817}{16}x - 6561$. Notice that the expression we want is equivalent to $-64(-\frac{81}{4}-s_1^4)(-\frac{81}{4}-s_2^4)(-\frac{81}{4}-s_2^4) = -64f(-\frac{81}{4})$. It follows that the given product is equal to $4199040 = 2^73^85^1$. It follows that a + b + c = 7 + 8 + 1 = 16.

15. $(\sqrt{6} + \sqrt{7})^{1000}$ in base ten has a tens digit of a and a ones digit of b. Determine 10a + b.

Solution: Notice that by adding $(\sqrt{7} - \sqrt{6})^{1000}$ to $(\sqrt{6} + \sqrt{7})^{1000}$ and using the Binomial Theorem on both powers, all of the radical terms of the expansions will cancel each other out, leaving us with the following integer:

$$(\sqrt{6} + \sqrt{7})^{1000} + (\sqrt{7} - \sqrt{6})^{1000} = 2 \cdot 7^{500} + 2 \cdot \binom{1000}{2} \cdot 7^{499} \cdot 6 + \dots + 2 \cdot \binom{1000}{998} \cdot 6^{499} \cdot 7^1 + 2 \cdot 6^{500}$$

Let $\sqrt{6} + \sqrt{7} = a$, and let $\sqrt{7} - \sqrt{6} = b$. It follows that we wish to calculate $a^{1000} + b^{1000} \pmod{100}$. Let $F_n = a^{2n} + b^{2n}$. We know that ab = 1 by difference of squares and we can manually calculate that $a^2 + b^2 = 26$. Notice that $a^{2n+2} + b^{2n+2} = (a^2 + b^2)(a^{2n} + b^{2n}) - a^2b^2(a^{2n-2} + b^{2n-2})$, or in other words, $F_{n+1} = 26F_n - F_{n-1}$. We can also calculate that $F_1 = 26$ and $F_2 \equiv 74 \pmod{100}$. We wish to find $F_{500} - 1 \pmod{100}$ as $b^{1000} < 1$. We can do this by finding $F_{500} \pmod{25}$ and $F_{500} \pmod{25}$. It follows that $G_1 = 1$ and $G_2 = 24$ and that $G_n = (G_{n-1} - G_{n-2}) \pmod{25}$. From here we can manually find that $G_3 = 23$, $G_4 = 24$, $G_5 = 1$, $G_6 = 2$, $G_7 = 1$, and $G_8 = 24$, therefore creating a cycle of length 6. It follows that $G_{500} = G_2 = 24$, and therefore $F_{500} \equiv 24 \pmod{25}$. Let $H_n = F_n \pmod{4}$. We know that $H_1 = H_2 = 2$, and $H_n = (-H_{n-2}) \pmod{4}$. It follows that $H_n = 2$ for all n, and therefore $H_{500} \equiv F_{500} \equiv 2 \pmod{4}$. By the Chinese Remainder Theorem, it follows that $F_{500} \equiv 74 \pmod{100}$, and therefore our answer is $74 - 1 = \boxed{73}$.

3 Sources

- 1. 2015 Berkeley Math Tournament Spring Analysis Problem 2
- 2. 2015 Berkeley Math Tournament Spring Analysis Problem 3
- 3. 2015 Berkeley Math Tournament Spring Analysis Problem 4
- 4. 2015 Berkeley Math Tournament Spring Analysis Problem 5

- 5. 2015 Berkeley Math Tournament Fall Individual Problem 15
- 6. 2015 Berkeley Math Tournament Fall Individual Problem 19
- 7. 2016 Berkeley Math Tournament Spring Individual Problem 5
- 8. 2016 Berkeley Math Tournament Spring Individual Problem 7
- 9. 2016 Berkeley Math Tournament Spring Individual Problem 8
- 10. 2016 Berkeley Math Tournament Spring Individual Problem 11
- **11.** 2016 Berkeley Math Tournament Spring Individual Problem 13
- 12. 2016 Berkeley Math Tournament Spring Analysis Problem 2 $\,$
- **13.** 2016 Berkeley Math Tournament Spring Team Problem 1
- 14. 2016 Berkeley Math Tournament Spring Team Problem 15
- 15. 2016 Berkeley Math Tournament Spring Discrete Problem 9