Algebra Handout \#5 Answers and Solutions

Walker Kroubalkian
February 6, 2018

1 Answers

1. $2,033,136$
2. $(5,-2,1)$
3. 3
4. 8
5. 2
6. -118
7. 552
8. 2
9. $\sqrt[3]{9}-2$
10. $-\frac{1}{2}, \frac{1}{2} \frac{3}{2}$
11. $\frac{20}{7}$
12. $(16,2)$
13. -1
14. 16
15. 73

2 Solutions

1. Let $g(x)=1+2 x+3 x^{2}+4 x^{3}+\ldots$. Find the coefficient of x^{2015} of $f(x)=\frac{g(x)}{1-x}$.

Solution: Notice that $g(x)$ is equivalent to the expansion of $(1+x+\cdots)^{2}=\left(\frac{1}{1-x}\right)^{2}$. It follows that $f(x)=\left(\frac{1}{1-x}\right)^{3}$. Therefore, we wish to find the number of triples of nonnegative integers (a, b, c) such that $a+b+c=2015$. By Stars and Bars, this is just $\binom{2017}{2}=2,033,136$.
2. Find all integer solutions to

$$
\begin{aligned}
& x^{2}+2 y^{2}+3 z^{2}=36, \\
& 3 x^{2}+2 y^{2}+z^{2}=84,
\end{aligned}
$$

$$
x y+x z+y z=-7 .
$$

Solution: Adding the first two equations and dividing by 4 , we get $x^{2}+y^{2}+z^{2}=30$. Combining this with the third equation, we get $x^{2}+y^{2}+z^{2}+2 x y+2 x z+2 y z=(x+y+z)^{2}=16$. It follows that $x+y+z=4$. Subtracting the first equation from the second equation, we get $x^{2}-z^{2}=24$. Therefore, $x+z$ is an integer factor of 24 , and because 24 is even, we must also have $x+z$ is even. Therefore, $x+z$ is among the set $\{-2,-4,-6,-8,-12,-24,2,4,6,8,12,24\}$. We also know that $x z+y(x+z)=-7$. Because $x+z$ is even, we know $x z$ is odd, and therefore both x and z are odd. Just using the facts that $x+z$ is an even factor of $24, x+y+z=4$, and $x y+y(x+z)=-7$, we can find that the only value of $x+z$ which works $x+z=6$. This produces the two triples $(x, y, z)=(1,-2,5)$ and $(5,-2,1)$. Checking, we find that only $(x, y, z)=(5,-2,1)$ works.
3. Let $\left\{a_{n}\right\}$ be a sequence of real numbers with $a_{1}=-1, a_{2}=2$ and for all $n \geq 3$,

$$
a_{n+1}-a_{n}-a_{n+2}=0 .
$$

Find $a_{1}+a_{2}+a_{3}+\ldots+a_{2015}$.
Solution: Rewriting the recurrence as $a_{n+2}=a_{n+1}-a_{n}$, we can manually find that $a_{3}=3$, $a_{4}=1, a_{5}=-2, a_{6}=-3, a_{7}=-1$, and $a_{8}=2$, with the sequence repeating every six terms. Notice that every block of 6 consecutive terms adds to 0 , so our answer is $a_{1}+a_{2}+a_{3}+a_{4}+a_{5}=$ $-1+2+3+1-2=3$.
4. Let x and y be real numbers satisfying the equation $x^{2}-4 x+y^{2}+3=0$. If the maximum and minimum values of $x^{2}+y^{2}$ are M and m respectively, compute the numerical value of $M-m$.
Solution: Notice that the given equation is equivalent to $(x-2)^{2}+y^{2}=1$, an equation which produces a circle of radius 1 centered at $(2,0)$. It follows that the maximum value of $x^{2}+y^{2}$ corresponds to the point on this circle which is furthest from the origin, or $(3,0)$, and therefore $M=9$. Similarly, m corresponds to the point $(1,0)$ and therefore $m=1$. It follows that $M-m=$ 8.
5. Given integers a, b, c satisfying

$$
\begin{gathered}
a b c+a+c=12 \\
b c+a c=8 \\
b-a c=-2
\end{gathered}
$$

what is the value of a ?
Solution: Adding the last two equations, we get $b(c+1)=6$. Therefore, $c+1$ is a factor of 6. By the second equation we know that c is a factor of 8 , so it follows that $c=-4,-2,1$ or 2 . Plugging in each of these values of c and solving tells us that the only solution (a, b, c) in integers is $(a, b, c)=(2,2,2)$, and therefore $a=2$.
6. Consider the following linear system of equations.

$$
\begin{gathered}
1+a+b+c+d=1 \\
16+8 a+4 b+2 c+d=2 \\
81+27 a+9 b+3 c+d=3 \\
\\
256+64 a+16 b+4 c+d=4
\end{gathered}
$$

Find $a-b+c-d$.
Solution: Consider the polynomial $f(x)=x^{4}+a x^{3}+b x^{2}+c x+d$. The given equations tell us that for $1 \leq x \leq 4, f(x)=x$. Therefore, $f(x)=(x-1)(x-2)(x-3)(x-4)+x$. Notice that $f(-1)=1-a+b-c+d=119$. Therefore $a-b+c-d=-118$.
7. Positive integers x, y, z satisfy $(x+y i)^{2}-46 i=z$. What is $x+y+z$?

Solution: The given equation tells us that $2 x y=46$, or $x y=23$ and that $x^{2}-y^{2}=z$. Because z is positive, we must have $x>y$, and therefore $x=23$ and $y=1$ and $z=528$. It follows that $x+y+z=529+23=552$.
8. Define $P(\tau)=(\tau+1)^{3}$. If $x+y=0$, what is the minimum possible value of $P(x)+P(y)$?

Solution: We wish to find the minimum possible value of $(1+x)^{3}+(1-x)^{3}$. This is equivalent to the minimum possible value of $6 x^{2}+2$ which is clearly 2 at $x=0$.
9. Simplify $\frac{1}{\sqrt[3]{81}+\sqrt[3]{72}+\sqrt[3]{64}}$

Solution: The given expression is equivalent to $\frac{1}{4+2 \sqrt[3]{9}+\sqrt[3]{9^{2}}}$. If we let $a=2$ and $b=\sqrt[3]{9}$, then the given expression is equivalent to $\frac{1}{a^{2}+a b+b^{2}}=\frac{a-b}{a^{3}-b^{3}}$. Substituting our values of a and b into this new expression gives us an answer of $\frac{\sqrt[3]{9}-2}{1}=\sqrt[3]{9}-2$.
10. The roots of the polynomial $x^{3}-\frac{3}{2} x^{2}-\frac{1}{4} x+\frac{3}{8}=0$ are in arithmetic progression. What are they?
Solution: Let the roots be a, b, and c where $a<b<c$, and let their common difference be d such that $a+d=b$ and $b+d=c$. It follows that $a+b+c=(b-d)+b+(b+d)=3 b=\frac{3}{2}$ by Vieta's. Therefore $b=\frac{1}{2}$ is a root. Factoring this out, we get that the polynomial is equivalent to $\left(x-\frac{1}{2}\right)\left(x^{2}-x-\frac{3}{4}\right)$. Using the Quadratic Formula on the second factor, we get that $x=\frac{3}{2}$ and $x=-\frac{1}{2}$ are also roots. Therefore our answer is $-\frac{1}{2}, \frac{1}{2}, \frac{3}{2}$.
11. The quartic equation $x^{4}+2 x^{3}-20 x^{2}+8 x+64$ contains the points $(-6,160),(-3,-113)$, and $(2,32)$. A cubic $y=a x^{3}+b x+c$ also contains these points. Determine the x-coordinate of the fourth intersection of the cubic with the quartic.
Solution: The given information is equivalent to the expression $x^{4}+(2-a) x^{3}-20 x^{2}+(8-b) x+$ $64-c=(x+6)(x+3)(x-2)(x-d)=0$ where d is the x-coordinate of the fourth intersection point. Equating their x^{2} terms gives us $-20=18-6-12-6 d-3 d+2 d$ or $-20=-7 d$. It follows that the fourth x-coordinate is $\frac{20}{7}$.
12. Find an integer pair of solutions (x, y) to the following system of equations.

$$
\begin{gathered}
\log _{2}\left(y^{x}\right)=16 \\
\log _{2}\left(x^{y}\right)=8
\end{gathered}
$$

Solution: Notice that the given equations are equivalent to $x \log _{2} y=16$ and $y \log _{2} x=8$. If we let $x=2^{a}$ and $y=2^{b}$, then it follows that $b \cdot 2^{a}=16$ and $a \cdot 2^{b}=8$. We can notice that the pair $(a, b)=(4,1)$ satisfies this equation, and therefore the pair $(x, y)=(16,2)$ satisfies the original equation.
13. Define a_{n} such that $a_{1}=\sqrt{3}$ and for all integers $i, a_{i+1}=a_{i}^{2}-2$. What is a_{2016} ?

Solution: Notice that $a_{2}=1$, and $a_{3}=-1$. Notice that no matter how many times the function $f(x)=x^{2}-2$ is applied to $x=-1$, we will always have $f(-1)=-1$, and therefore for all $n \geq 3$, $a_{n}=-1$. It follows that $a_{2016}=-1$.
14. Let s_{1}, s_{2}, s_{3} be the three roots of $x^{3}+x^{2}+\frac{9}{2} x+9$.

$$
\prod_{i=1}^{3}\left(4 s_{i}^{4}+81\right)
$$

can be written as $2^{a} 3^{b} 5^{c}$. Find $a+b+c$.
Solution: Consider the cubic $x^{3}-d x^{2}+e x-f$ with roots g, h, and i. By Vieta's Formulas, we know $g+h+i=d, g h+g i+h i=e$, and $g h i=f$. It follows that $g^{2}+h^{2}+i^{2}=d^{2}-2 e$, $g^{2} h^{2}+g^{2} i^{2}+h^{2} i^{2}=e^{2}-2 d f$, and $g^{2} h^{2} i^{2}=f^{2}$. It follows that the cubic with roots g^{2}, h^{2}, and i^{2} is $x^{3}-\left(d^{2}-2 e\right) x^{2}+\left(e^{2}-2 d f\right) x-f^{2}$. Using this knowledge, we can find that the cubic with roots s_{1}^{2}, s_{2}^{2}, and s_{3}^{2} is $x^{3}+8 x^{2}+\frac{9}{4} x-81$ and the cubic with roots s_{1}^{4}, s_{2}^{4}, and s_{3}^{4} is $f(x)=x^{3}-\frac{119}{2} x^{2}+\frac{20817}{16} x-6561$. Notice that the expression we want is equivalent to $-64\left(-\frac{81}{4}-s_{1}^{4}\right)\left(-\frac{81}{4}-s_{2}^{4}\right)\left(-\frac{81}{4}-s_{2}^{4}\right)=-64 f\left(-\frac{81}{4}\right)$. It follows that the given product is equal to $4199040=2^{7} 3^{8} 5^{1}$. It follows that $a+b+c=7+8+1=$ 16.
15. $(\sqrt{6}+\sqrt{7})^{1000}$ in base ten has a tens digit of a and a ones digit of b. Determine $10 a+b$.

Solution: Notice that by adding $(\sqrt{7}-\sqrt{6})^{1000}$ to $(\sqrt{6}+\sqrt{7})^{1000}$ and using the Binomial Theorem on both powers, all of the radical terms of the expansions will cancel each other out, leaving us with the following integer:
$(\sqrt{6}+\sqrt{7})^{1000}+(\sqrt{7}-\sqrt{6})^{1000}=2 \cdot 7^{500}+2 \cdot\binom{1000}{2} \cdot 7^{499} \cdot 6+\cdots+2 \cdot\binom{1000}{998} \cdot 6^{499} \cdot 7^{1}+2 \cdot 6^{500}$
Let $\sqrt{6}+\sqrt{7}=a$, and let $\sqrt{7}-\sqrt{6}=b$. It follows that we wish to calculate $a^{1000}+b^{1000}(\bmod 100)$. Let $F_{n}=a^{2 n}+b^{2 n}$. We know that $a b=1$ by difference of squares and we can manually calculate that $a^{2}+b^{2}=26$. Notice that $a^{2 n+2}+b^{2 n+2}=\left(a^{2}+b^{2}\right)\left(a^{2 n}+b^{2 n}\right)-a^{2} b^{2}\left(a^{2 n-2}+b^{2 n-2}\right)$, or in other words, $F_{n+1}=26 F_{n}-F_{n-1}$. We can also calculate that $F_{1}=26$ and $F_{2} \equiv 74(\bmod 100)$. We wish to find $F_{500}-1(\bmod 100)$ as $b^{1000}<1$. We can do this by finding $F_{500}(\bmod 25)$ and F_{500} $(\bmod 4) . \operatorname{Let} G_{n}=F_{n}(\bmod 25)$. It follows that $G_{1}=1$ and $G_{2}=24$ and that $G_{n}=\left(G_{n-1}-G_{n-2}\right)$ $(\bmod 25)$. From here we can manually find that $G_{3}=23, G_{4}=24, G_{5}=1, G_{6}=2, G_{7}=1$, and $G_{8}=24$, therefore creating a cycle of length 6 . It follows that $G_{500}=G_{2}=24$, and therefore $F_{500} \equiv 24(\bmod 25)$. Let $H_{n}=F_{n}(\bmod 4)$. We know that $H_{1}=H_{2}=2$, and $H_{n}=\left(-H_{n-2}\right)$ $(\bmod 4)$. It follows that $H_{n}=2$ for all n, and therefore $H_{500} \equiv F_{500} \equiv 2(\bmod 4)$. By the Chinese Remainder Theorem, it follows that $F_{500} \equiv 74(\bmod 100)$, and therefore our answer is $74-1=73$.

3 Sources

1. 2015 Berkeley Math Tournament Spring Analysis Problem 2
2. 2015 Berkeley Math Tournament Spring Analysis Problem 3
3. 2015 Berkeley Math Tournament Spring Analysis Problem 4
4. 2015 Berkeley Math Tournament Spring Analysis Problem 5
5. 2015 Berkeley Math Tournament Fall Individual Problem 15
6. 2015 Berkeley Math Tournament Fall Individual Problem 19
7. 2016 Berkeley Math Tournament Spring Individual Problem 5
8. 2016 Berkeley Math Tournament Spring Individual Problem 7
9. 2016 Berkeley Math Tournament Spring Individual Problem 8
10. 2016 Berkeley Math Tournament Spring Individual Problem 11
11. 2016 Berkeley Math Tournament Spring Individual Problem 13
12. 2016 Berkeley Math Tournament Spring Analysis Problem 2
13. 2016 Berkeley Math Tournament Spring Team Problem 1
14. 2016 Berkeley Math Tournament Spring Team Problem 15
15. 2016 Berkeley Math Tournament Spring Discrete Problem 9
