Algebra Handout \#5
 Walker Kroubalkian
 January 30, 2018

1 Problems

1. Let $g(x)=1+2 x+3 x^{2}+4 x^{3}+\ldots$. Find the coefficient of x^{2015} of $f(x)=\frac{g(x)}{1-x}$.
2. Find all integer solutions to

$$
\begin{gathered}
x^{2}+2 y^{2}+3 z^{2}=36, \\
3 x^{2}+2 y^{2}+z^{2}=84, \\
x y+x z+y z=-7 .
\end{gathered}
$$

3. Let $\left\{a_{n}\right\}$ be a sequence of real numbers with $a_{1}=-1, a_{2}=2$ and for all $n \geq 3$,

$$
a_{n+1}-a_{n}-a_{n+2}=0
$$

Find $a_{1}+a_{2}+a_{3}+\ldots+a_{2015}$.
4. Let x and y be real numbers satisfying the equation $x^{2}-4 x+y^{2}+3=0$. If the maximum and minimum values of $x^{2}+y^{2}$ are M and m respectively, compute the numerical value of $M-m$.
5. Given integers a, b, c satisfying

$$
\begin{gathered}
a b c+a+c=12 \\
b c+a c=8 \\
b-a c=-2
\end{gathered}
$$

what is the value of a ?
6. Consider the following linear system of equations.

$$
\begin{gathered}
1+a+b+c+d=1 \\
16+8 a+4 b+2 c+d=2 \\
81+27 a+9 b+3 c+d=3 \\
256+64 a+16 b+4 c+d=4
\end{gathered}
$$

Find $a-b+c-d$.
7. Positive integers x, y, z satisfy $(x+y i)^{2}-46 i=z$. What is $x+y+z$?
8. Define $P(\tau)=(\tau+1)^{3}$. If $x+y=0$, what is the minimum possible value of $P(x)+P(y)$?
9. Simplify $\frac{1}{\sqrt[3]{81}+\sqrt[3]{72}+\sqrt[3]{64}}$
10. The roots of the polynomial $x^{3}-\frac{3}{2} x^{2}-\frac{1}{4} x+\frac{3}{8}=0$ are in arithmetic progression. What are they?
11. The quartic equation $x^{4}+2 x^{3}-20 x^{2}+8 x+64$ contains the points $(-6,160),(-3,-113)$, and $(2,32)$. A cubic $y=a x^{3}+b x+c$ also contains these points. Determine the x-coordinate of the fourth intersection of the cubic with the quartic.
12. Find an integer pair of solutions (x, y) to the following system of equations.

$$
\begin{gathered}
\log _{2}\left(y^{x}\right)=16 \\
\log _{2}\left(x^{y}\right)=8
\end{gathered}
$$

13. Define a_{n} such that $a_{1}=\sqrt{3}$ and for all integers $i, a_{i+1}=a_{i}^{2}-2$. What is a_{2016} ?
14. Let s_{1}, s_{2}, s_{3} be the three roots of $x^{3}+x^{2}+\frac{9}{2} x+9$.

$$
\prod_{i=1}^{3}\left(4 s_{i}^{4}+81\right)
$$

can be written as $2^{a} 3^{b} 5^{c}$. Find $a+b+c$.
15. $(\sqrt{6}+\sqrt{7})^{1000}$ in base ten has a tens digit of a and a ones digit of b. Determine $10 a+b$.

2 Sources

1. 2015 Berkeley Math Tournament Spring Analysis Problem 2
2. 2015 Berkeley Math Tournament Spring Analysis Problem 3
3. 2015 Berkeley Math Tournament Spring Analysis Problem 4
4. 2015 Berkeley Math Tournament Spring Analysis Problem 5
5. 2015 Berkeley Math Tournament Fall Individual Problem 15
6. 2015 Berkeley Math Tournament Fall Individual Problem 19
7. 2016 Berkeley Math Tournament Spring Individual Problem 5
8. 2016 Berkeley Math Tournament Spring Individual Problem 7
9. 2016 Berkeley Math Tournament Spring Individual Problem 8
10. 2016 Berkeley Math Tournament Spring Individual Problem 11
11. 2016 Berkeley Math Tournament Spring Individual Problem 13
12. 2016 Berkeley Math Tournament Spring Analysis Problem 2
13. 2016 Berkeley Math Tournament Spring Team Problem 1
14. 2016 Berkeley Math Tournament Spring Team Problem 15
15. 2016 Berkeley Math Tournament Spring Discrete Problem 9
