Triangles

Ricky S., Walker K., Oshadha G.

September 20, 2015

1 Similarity and Congruence

1.1 Similarity

Two triangles are similar if one can be turned, flipped, and/or dilated to exactly match the other. This means that everything but size and orientation are the same.

1.2 AAA Similarity

Theorem 1. Two triangles are similar iff they are made up of the same angles.

1.3 AA Similarity

Since two angles of a triangle define the third, two triangles can be proven similar if two pairs of angles are equal. The third pair of equal angles is unnecessary.

Theorem 2. Two triangles are similar iff the ratios of corresponding sides are all equal. Therefore, if $\triangle A B C$ is similar to $\triangle D E F$,

$$
\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}
$$

Example: In $\triangle A B C, C$ is a right angle, D is on $A B, E$ is on $A C$ and $\angle A E D$ is a right angle. If $B C=9 \mathrm{~mm}, D E=6 \mathrm{~mm}$ and $\mathrm{EC}=4 \mathrm{~mm}$, what is $A B$?

1.4 Congruence

Two triangles are congruent if one of them can be turned and/or flipped and placed exactly on top of the other, with all parts lining up perfectly. Or more simply, two objects are congruent if they have the same size and shape.

1.5 SSS Congruence

If three sides of one triangle are congruent to to the corresponding sides of another triangle, then the two triangles are congruent.

1.6 SAS congruence

If two sides of two triangles are congruent, and the angle between the two sides is equal, then the two triangles are congruent.

1.7 ASA congruence

If two angle of two triangles are equal, and the side between the two angles is the same length, then the two triangles are congruent.

1.8 AAS congruence

If two angles of two triangles are equal, and corresponding sides of the triangle (not between the angles) are congruent, then the two triangles are congruent. This is an extension of ASA congruence, as given two triangles with two pairs of congruent angles, the last pair of angles is also congruent.

1.9 HL congruence

This is a special case of congruency involving right triangles. If both the hypotenuse and leg of one right triangle are congruent to that of another, then the two triangles are congruent.

We can use the knowledge of congruence to discover missing information about triangles. If two triangles are known to be congruent, then all corresponding parts of the triangles are also congruent.

2 Pythagorean Theorem

A right triangle is a special type of triangle where one of the angles is 90 degrees. (In other words, one of the sides is the altitude from one vertex to the opposite side.) The 90 degree angle is called a right angle. Two right angles form a straight line. Using similarity, we can derive the following property for right triangles.

Theorem 3. If and only if $A B C$ is a right triangle with side lengths a, b, and c where c is the hypotenuse, we have that $a^{2}+b^{2}=c^{2}$

This property is known as The Pythagorean Theorem. Because the shortest distance between any two points is a straight line, The Pythagorean Theorem is great at finding the distance between points. If you can find a right triangle with a hypotenuse of some line segment, and if you know what the legs of the triangle are, then you can find the length of the line segment.

Example: Walker is 5 miles east and 12 miles north of MLG Swagville. He wishes to join his fellow Major League Gamers. What is the minimum number of miles he must walk to get to his destination?

Example: In the diagram, $\mathrm{AB}=13 \mathrm{~cm}, \mathrm{AD}=5 \mathrm{~cm}$, and $\mathrm{DC}=20 \mathrm{~cm}$. What is the square of the length of AC? (Source: Introduction to Geometry AoPS)

It is also worth mentioning that the Pythagorean Theorem is an if and only if statement. This means that if a triangle has sides a, b, and c which satisfy $a^{2}+b^{2}=c^{2}$, then the triangle must be a right triangle.

Example: Point D is drawn on segment $B C$ of triangle $A B C$ such that $B D=5, C D=$ $9, A B=13$, and $A C=15$. Find the length of segment $A D$.

3 Area of a Triangle

The area of triangles can be found in several ways depending on what information is given. Here are a few ways of calculating the area of a triangle.

3.1 Basic Method

Theorem 4. $A=\frac{b h}{2}$
This is the most prevalent method for finding the area of a triangle. Given a side-length and its altitude, the area is half their product.

3.2 Heron's Formula

Theorem 5. $A=\sqrt{s(s-a)(s-b)(s-c)}$, where $s=\frac{a+b+c}{2}$
This formula finds the area of a triangle given the side-lengths a, b, and c.
Example: Oshadha is reading a book with triangular paper titled The Four-Sided Triangle. The book has 26 triangular pages, where each page is one sheet of triangular paper. The sides of the papers measure 52 inches, 41 inches, and 15 inches. What is the total area of paper for all 26 pages?

3.3 Trigonometric Method

Theorem 6. $A=\frac{1}{2} a b \sin C$
This formula finds the area of a triangle given the side-lengths a, b, and the angle between sides A and $B, \angle C$.

Example: A triangle has sides of lengths 6 and 8, separated by an angle of 30°. What is the area of this triangle?

3.4 Equilateral Triangles

Theorem 7. $A=\frac{s^{2} \sqrt{3}}{4}$
This formula finds the area of an equilateral triangle with side-length s.

4 Special Triangles

Some types of triangles show up quite often in competitive problems. Often times, auxiliary lines - ones you add to the diagram - can make these special triangles, simplifying the problem solving process greatly. It is quite helpful to be able to recognize these special triangles when they come up and apply their properties.

4.1 45-45-90 Triangles

Isosceles right triangles hold an interesting property regarding their side lengths. Suppose that we have $\triangle A B C$, where $\angle B$ is a right angle. If we know the length of one of the legs $(A B$ or $B C)$ to have length s, we know that the other leg has length s (since it is an isosceles triangle). From that, we can use the Pythagorean Theorem to find the hypotenuse, $s \sqrt{2}$. This is true for all 45-45-90 triangles.

4.2 30-60-90 Triangles

Suppose that we have $\triangle A B C$, where $\angle B$ is a right angle and $\angle C$ is 30°. This triangle's special property also involves the side lengths of a triangle. If the side $A B$ opposite of the 30° angle is of length s, then we can say $B C=2 \sqrt{3}$ and $A C=2 s$.

4.3 15-75-90 Triangles

This special triangle is a bit stranger than the rest. Suppose we have a $\triangle A B C$, where $\angle B$ is a right angle and $\angle C$ is 75°. If we were to draw an altitude from B to the hypotenuse $A C$ to some point D, we would find an interesting property. If we know the hypotenuse $A C$ to be of length s, we can say that $B D=\frac{s}{4}$.

4.4 Equilateral Triangles

The majority of the special properties of an equilateral triangle come from its own definition. Given one side length, we immediately know the rest. We can also find the area given only one side length, as we discussed previously. Another useful property of an equilateral triangle, however, is that it can be split into two 30-60-90 triangles.

5 Angle Bisector Theorem

The Angle Bisector Theorem states that, given $\triangle A B C$ and angle bisector $A D$, where D is on side $B C$, then $\frac{A B}{B D}=\frac{A C}{C D}$. Likewise, the converse of this theorem holds as well.

Example: Walker owns a farm. On his farm, he has a sheep pen. The pen, denoted as $A B C$, is triangular and must be divided into an area for white sheep and an area for black sheep. For a point D on $B C$, the divider $A D$ bisects angle A. If fence $B C$ is 3 meters, fence $A B$ is 2 meters, and the area set for the black sheep is twice as large as that set for the white sheep, what is length of fence $A C$?

6 Triangle Inequalities

Inequalities are extremely useful when it comes to dealing with variables without a specified value. They can be used with triangles as well, showing certain behaviors that show uniqueness or impossibilities within the figures.

6.1 Triangle Inequality

Theorem 8. The Triangle Inequality states that in a triangle with side lengths a, b, and c, in no specific order, the sum of a and b must be greater than c. That is, $a+b<c$.

Example: If a triangle with an integral perimeter has side lengths 31, 42, and a, how many possible values are there for a ?

6.2 Pythagorean Inequality

Theorem 9. The Pythagorean Inequality states that in a triangle with side lengths a, b, and c, where $a<b<c$, we can determine one of the three following conditions:
(1) If $a^{2}+b^{2}=c^{2}$, the triangle is right.
(2) If $a^{2}+b^{2}<c^{2}$, the triangle is obtuse.
(3) If $a^{2}+b^{2}>c^{2}$, the triangle is acute.

Example: Given the side lengths, determine whether the following triangles are right, obtuse, or acute.

1. $20,21,29$
2. $5,12,16$
3. $6,9,12$
4. $11,60,61$
5. $14,15,16$

7 Problems

1. Triangle $A B C$ is an isosceles right triangle with the measure of angle A equal to 90 degrees. The length of segment $A C$ is 6 cm . What is the area of triangle $A B C$, in square centimeters?
2. (1995 AHSME \#23) The sides of a triangle have lengths 11,15 , and k, where k is an integer. For how many values of k is the triangle obtuse?
3. Let $A B C$ be a triangle with angle bisector $A D$ with D on line segment $B C$. If $B D=2$, $C D=5$, and $A B+A C=10$, find $A B$ and $A C$.
4. In $\triangle A B C$, let P be a point on $B C$ and let $A B=20, A C=10, B P=\frac{20 \sqrt{3}}{3}$, and $C P=\frac{10 \sqrt{3}}{3}$. Find the value of $m \angle B A P-m \angle C A P$.
5. In triangle $A B C, A B=10$ and $A C=17$. Let D be the foot of the perpendicular from A to $B C$. If $B D: C D=2: 5$, then find $A D$.
6. (2002 AMC 12B \#20) Let $\triangle X O Y$ be a right-angled triangle with $m \angle X O Y=90^{\circ}$. Let M and N be the midpoints of legs $O X$ and $O Y$, respectively. Given that $X N=19$ and $Y M=22$, find $X Y$.
7. (2007 AMC 12A \#6) Triangles $A B C$ and $A D C$ are isosceles with $A B=B C$ and $A D=D C$. Point D is inside triangle $A B C$, angle $A B C$ measures 40 degrees, and angle $A D C$ measures 140 degrees. What is the degree measure of angle $B A D$?
8. Let $\triangle D E F$ be a right triangle with a right angle at $\angle E$ and $m \angle F=75^{\circ}$. If $D F=20$, what is the area of $\triangle D E F$?
9. (2005 AMC 10B \#14) Equilateral $\triangle A B C$ has side length $2, M$ is the midpoint of $A C$, and C is the midpoint of $B D$. What is the area of $\triangle C D M$?
10. Square $A B C D$ has side length 2. A semicircle with diameter $A B$ is constructed inside the square, and the tangent to the semicircle from C intersects side $A D$ at E. What is the length of $C E$?

11. The sum of the perimeters of two equilateral triangles is 45 inches, and the area of the larger one is 16 times the area of the smaller one. What is the area, in square inches, of the larger triangle?
12. (2006 AMC 10B \#10) In a triangle with integer side lengths, one side is three times as long as a second side, and the length of the third side is 15 . What is the greatest possible perimeter of the triangle?
13. (2009 AMC 10A \#10) Triangle $A B C$ has a right angle at B. Point D is the foot of the altitude from $B, A D=3$, and $D C=4$. What is the area of $\triangle A B C$?
14. (2009 AMC 10B $\# 20$) Triangle $A B C$ has a right angle at $B, A B=1$, and $B C=2$. The bisector of $\angle B A C$ meets $B C$ at D. What is $B D$?
15. (2005 AMC 12B \#6) In $\triangle A B C$, we have $A C=B C=7$ and $A B=2$. Suppose that D is a point on line $A B$ such that B lies between A and D and $C D=8$. What is $B D$?
16. We have a triangle $\triangle A B C$ such that $A B=6, B C=8$, and $C A=10$. If $A D$ is an angle bisector such that D is on $B C$, then find the value of $A D^{2}$.
17. Triangle $A B C$ has three different integer side lengths. Side $A C$ is the longest side and side $A B$ is the shortest side. If the perimeter of $A B C$ is 384 units, what is the greatest possible difference $A C-A B$?
18. (2006 AIME I \# 1) In quadrilateral $A B C D, \angle B$ is a right angle, diagonal $A C$ is perpendicular to $C D, A B=18, B C=21$, and $C D=14$. Find the perimeter of $A B C D$.
19. (2011 Mock Geometry AIME \#6) Three points A, B, and C are chosen at random on a circle. The probability that there exists a point P inside an equilateral triangle $A_{1} B_{1} C_{1}$ such that $P A_{1}=B C, P B_{1}=A C$, and $P C_{1}=A B$ can be expressed in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.
20. (2011 Mock Geometry AIME \#13) In acute triangle $A B C, \ell$ is the bisector of $\angle B A C$. M is the midpoint of $B C$. a line through M parallel to ℓ meets $A C, A B$ at E, F, respectively. Given that $A E=1, E F=\sqrt{3}, A B=21$, the sum of all possible values of $B C$ can be expressed as $\sqrt{a}+\sqrt{b}$, where a, b are positive integers. What is $a+b$?
