

Sprint Test Round 11100 - Solutions

1. D		6. B	11. E (1)	16. A	21. B	26. D
2. A	5) 5)	7. E (4024)	12. A	17. D	22. B	27. D
3. C		8. C	13. B	18. E $\left(\frac{100x}{100-x}\right)$	23. D	28. C
4. A		9. B	, 14. D	19. C	24. C	29. B
5. A		10. D	15. E (125)	20. C	25. C	30. C

- 5. The value is 1 for x = 1 or x = 2010. It is negative for all integers x in between.
- 9. Plug in x = 2 and x = 3 to get 2 equations with the 2 unknowns of f(2) and f(3). Solving this system of equations yields f(2) = 7.
- 12. Solving, the region is bounded by $y=\pm\frac{2}{3}x\pm4$, and so it is a rhombus with vertices $(0,\pm4), (\pm6,0)$. It's area is therefore $\frac{12\cdot8}{2}=48$.
- 14. Letting $y = x^2 5x$ we have $0 = y^2 2y 24 = (y 6)(y + 4) = (x^2 5x 6)(x^2 5x + 4) = (x 6)(x + 1)(x 4)(x 1)$, so $x = 6, 4, \pm 1$, and the sum is 10.
- 15. From the given information we have $5 = b^2$ and $n = b^5$. Thus $bn = b^6 = (b^2)^3 = 5^3 = 125$.
- 17. $\log(17^{10000}) = 10000 \log(17) = 12304.4...$, so there are 12305 digits.
- 23. Let x,y, and z be the dimensions. Then x + y + z = 13 and 2(xy + xz + yz) = 48. Thus $\sqrt{x^2 + y^2 + z^2} = \sqrt{13^2 48} = 11$.
- 25. Let Q be the point of intersection of OP and RS. Let OQ = a and RQ = b. Then $OR = \sqrt{a^2 + b^2}$. By similar triangles, $PR = \frac{b\sqrt{a^2 + b^2}}{a}$. So $\frac{1}{PR^2} + \frac{1}{OR^2} = \frac{a^2}{b^2(a^2 + b^2)} + \frac{1}{a^2 + b^2} = \frac{a^2 + b^2}{b^2(a^2 + b^2)} = \frac{1}{b^2} = \frac{1}{16}$, so b = 4 and RS = 2b = 8.
- 26. The total area is 48. Using lines AC and AD to partition the figure, we have areas ABC = 18, ADEF = 18, and so ACD = 12. We need points G on BC and H on DE such that areas ACG and ADH are both 2. Since the heights of these triangles are 6 and 2, their bases must be $\frac{2}{3}$ and 2, respectively. So we have points $G(\frac{16}{3}, 6)$ and H(8, 2). The sum of the slopes is therefore $\frac{9}{8} + \frac{1}{4} = \frac{11}{8}$.

Sprint Test Round 11100 - Solutions

27. The function $f(x,y) = (x-y)^2$ does not satisfy property 3. For instance, $(6-0)^2 + (0-(-3))^2 < (6-(-3))^2$. The rest of the functions indeed are "distance-like". The first two properties are easy to check. Property 3 holds for A by case analysis, for B because it is a scaling of the usual distance, and for C using the fact that d(x,y) = |x-y| is "distance-like", and that if $a,b,c \ge 0$ with $a \le b+c$ then it can be shown that $\frac{a}{a+1} \le \frac{b}{b+1} + \frac{c}{c+1}$. (Multiply through by (a+1)(b+1)(c+1) and subtract the left side to obtain 0 < abc + 2bc + b + c - a, because b+c > a.)

28. Suppose M has k digits other than the leading digits 15. Then $M=15\cdot 10^k+r$ where r has k digits. Moreover, 5M=100r+15 so simplifying we get $15\cdot 10^k=19r+3$, or $15\cdot 10^k\equiv 3$ mod 19. Checking a few numbers, this implies $10^k\equiv 4$ mod 19. Iterating multiplication by 10, the first power we find is k=16, and hence M has 18 digits. [Alternatively, we can multiply 15 by 5 to discover the next digit (7), and then multiply 157 by 5 to discover the next digit, and so on until we find 15 again. See if you can show why this works, and what M is.]

29. If $x^4+2012x^2+m=(x^2+ax+b)(x^2+cx+d)=x^4+(a+c)x^3+(ac+b+d)x^2+(ad+bc)x+bd$, then we have a+c=ad+bc=0, so -a=c and b=d, and $2b-a^2=2012$, and $b^2=m$. To minimize m we must minimize b, and since $a\neq 0$, b is minimized with $a=\pm 2$, so b=1008 and $m=1008^2$, which ends in a 4.

30. Choose a coordinate system so that L is the z-axis and P is the point $(3\sqrt{3},0,0)$. Let $(p,q,r)\in X$. The distance from a point (p,q,r) to L is $\sqrt{x^2+y^2}$ while its distance to P is $\sqrt{(p-3\sqrt{3})^2+q^2+r^2}$. The given condition on the comparative distance from P to (p,q,r) and P to L is $p^2+q^2\geq 4((p-3\sqrt{3})^2+q^2+r^2)$, which simplifies to $36\geq 3\left(p-4\sqrt{3}\right)^2+3q^2+4r^2$. Now translate by $-4\sqrt{3}$ in the x-direction. This does not change the volume. Letting $p'=p-4\sqrt{3}$ we have the inequality $1\geq \left(\frac{p'}{2\sqrt{3}}\right)^2+\left(\frac{q}{2\sqrt{3}}\right)^2+\left(\frac{r}{3}\right)^2$. This a solid ellipsoid centered at the origin, with a volume of $\frac{4}{3}\pi r_1 r_2 r_3=48\pi$.