Introduction to Number Theory

Walker Kroubalkian, Oshadha Gunasekara, Ricky Shapley

October 26, 2015

1 Primes

A prime is a number with two factors: 1 and itself. For example, 13 is a prime number because its factors are 1 and 13. There are infinitely many primes and only one even prime: 2.

Primes form the basis of all numbers. Every number can be written as the product of one or more primes. Commonly we denote this as $n = p_1^{a_1} \cdot p_2^{a_2} \cdot p_3^{a_3} \dots \cdot p_n^{a_n}$, where $p_1, p_2, p_3, \dots p_n$ are distinct primes and $a_1, a_2, a_3, \dots a_n$ are their exponents.

Examples:

- 1. Prime factorize 642.
- 2. How many pairs of primes exist with sum 103?
- 3. Prove that there are infinitely many primes.

2 Divisibility

An integer a is considered divisible by another integer b if and only if b is a divisor of a. That is, $\frac{a}{b} = m$, for some integer m. We can denote this as b|a.

Divisibility Rules

2: If the units digit of n is even, then 2|n.

- 3: If the sum of the digits of n is divisible by 3, then 3|n.
- 4: If the last two digits of n are divisible by 4, then 4|n.
- 5: If the units digit of n is 0 or 5, then 5|n.
- 6: If n is divisible by 2 and 3, then 6|n.
- 7: If $n 2(n \pmod{10})$ is divisible by 7, then 7|n.
- 8: If the last three digits of n are divisible by 8, then 8|n.
- 9: If the sum of the digits of n is divisible by 9, then 9|n.

10: If the units digit of n is 0, then 10|n.

11: If the difference of the sum of the alternating digits is divisible by 11, then 11|n.

Examples:

- 1. Find all a and b such that 11|a42b8.
- 2. Find the sum of all a + b such that 8|7485ba.

3 Modular Arithmetic

3.1 Identities

We can define modular arithmetic in the following way: if a = cx + b for some integers a, b, c, and x, then $a \equiv b \pmod{c}$. Inversely, if $a \equiv b \pmod{c}$ then a leaves a remainder of b when divided by c. With this definition, we are able to derive a few identities.

Theorem 1. $a \equiv b \pmod{c}$ if and only if c|a - b. (Note: this can be seen in the Euclidean Algorithm).

Theorem 2. If $a \equiv b \pmod{e}$ and $c \equiv d \pmod{e}$, then $a \# c \equiv b \# d \pmod{e}$, where # denotes addition, subtraction, or multiplication.

Theorem 3. If $a \equiv b \pmod{c}$, then $a^n \equiv b^n \pmod{c}$ for integer exponents n.

Theorem 4. If $e \mid c \text{ and } a \equiv b \pmod{c}$, then $a \equiv b \pmod{e}$.

Theorem 5. If a and b satisfy $ab \equiv 1 \pmod{c}$, then $a^{-1} \equiv b \pmod{c}$. We consider b to be the modular inverse of a.

Theorem 6. If $a + b \equiv 0 \pmod{n}$, then $a \equiv -b \pmod{n}$.

Examples:

- 1. Find the remainder when $2001^{2001^{2001}}$ is divided by 1000.
- 2. Prove that it is impossible for the square of an integer to leave a remainder of 2 when divided by 3, or a remainder fo 2 or 3 when divided by 4.

3.2 Chinese Remainder Theorem

Modular arithmetic also provides us with a very useful theorem called the Chinese Remainder Theorem.

Theorem 7. The Chinese Remainder Theorem. If m is relatively prime to n, then there is a one to one correspondence between the residues of $a \pmod{m}$ and $a \pmod{n}$ and the residue of $a \pmod{mn}$.

In other words, you can break the modulus (the part which you are dividing by) up into its distinct prime factors when trying to find a remainder.

Example: Sloan has a certain number of cultists which he wishes to divide into groups. He finds that if the cultists were divided int groups of 5, there would be 1 left over. If the cultists were divided into groups of 7, there would be 3 left over. If the cultists were divided into groups of 8, there would be 4 left over. Finally, if the groups were divided into groups of 9, there would be 5 left over. Given that Sloan's cult has diminished and now has less than 3000 cultists, what is the total number of cultists?

4 Numerical Bases

A numerical base is a number which defines the set of digits used to write a number. In normal mathematics, we use base 10 for most of our calculations, which has 10 unique digits that are used to write every number $(0, 1, 2 \dots 8, 9)$. Bases are denoted by subscripts, 31_5 reads as 31 base 5. To convert between bases, it is usually simplest to convert to and from base 10.

Theorem 8. For a number $(a_1a_2a_3...a_{n-1}a_n)_b$ where every a_n is a digit, the corresponding number in base 10 is $a_n + a_{n-1} \cdot b^1 + a_{n-2} \cdot b^2 + ... + a_{n-k} \cdot b^k + ... + a_1 \cdot b^{n-1}$.

Theorem 9. To convert a number from base 10 to another base, you use a repeated algorithm:

- 1: Divide the desired base into the number you are trying to convert.
- 2: Write the quotient with a remainder.
- 3: Repeat this division process using the whole number from the previous quotient.
- 4: Repeat this division until the number in front of the remainder is only zero.
- 5: The answer is the remainders read from the bottom up.

Examples:

- 1. Convert 282_{10} to base 9.
- 2. Convert 212_3 to base 10.

5 Multiplicative Functions

A multiplicative function is a function f(x) such that when m and n are relatively prime, $f(m) \cdot f(n) = f(mn)$ for all integers m and n. Multiplicative functions satisfy the following properties:

Theorem 10. If f(x) is multiplicative, f(1) = 1 or f(x) = 0 for all x.

Theorem 11. If f(x) is multiplicative, and the prime factorization of n is $p_1^{a_1} \cdot p_2^{a_2} \cdot p_3^{a_3} \dots p_n^{a_n}$, then $f(n) = f(p_1^{a_1}) \cdot f(p_2^{a_2}) \cdot f(p_3^{a_3}) \dots f(p_n^{a_n})$.

There are some well-known multiplicative functions which often show up in competitions.

5.1 The Divisor Function

The Divisor Function, commonly referred to as d(n) counts the number of factors of n. It can be computed by adding 1 to each of the exponents in the prime factorization of n and multiplying all of the results. That is, if $n = p_1^{a_1} \cdot p_2^{a_2} \cdot p_3^{a_3} \dots \cdot p_n^{a_n}$, then $d(n) = (a_1 + 1)(a_2 + 1)(a_3 + 1) \dots (a_n + 1)$.

Example: Find the total number of factors of $37748736 = 2^{22} \cdot 3^2$.

5.2 The Sum Function

The Sum Function, commonly referred to as $\sigma(n)$ finds the sum of the factors of n. It can be computed by finding the sum of the factors of each of the prime powers in the prime factorization of n and multiplying the results. That is, if $n = p_1^{a_1} \cdot p_2^{a_2} \cdot p_3^{a_3} \dots \cdot p_n^{a_n}$, then $\sigma(n) = (p_1^{a_1} + p_1^{a_1-1} + \dots + p_1 + 1)(p_2^{a_2} + p_2^{a_2-1} + \dots + p_2 + 1) \dots (p_n^{a_n} + p_n^{a_n-1} + \dots + p_n + 1).$

Example: Find the sum of the factors of 236.

5.3 Euler's Totient Function

The Totient Function, commonly referred to as $\phi(n)$ finds the number of integers between 0 and n-1 inclusive which are relatively prime to n. It can be computed by multiplying n by $\frac{p-1}{p}$ for all distinct prime factors p of n. That is, if $n = p_1^{a_1} \cdot p_2^{a_2} \cdot p_3^{a_3} \dots \cdot p_n^{a_n}$, then $\phi(n) = n \cdot (\frac{p_1 - 1}{p_1}) \cdot (\frac{p_2 - 1}{p_2}) \dots (\frac{p_n - 1}{p_n})$.

Euler's Totient Theorem has a very important application to number theory in Euler's Totient Theorem.

Theorem 12. Euler's Totient Theorem. If a and b are relatively prime to each other, then $a^{\phi(b)} \equiv 1 \pmod{b}$.

This tells us that the modular inverse of $a \pmod{b}$ is congruent to $a^{\phi(b)-1} \pmod{b}$.

Example: Let $f_0 = 1$, and for $n \ge 1$, let $f_n = 3^{f_{n-1}}$. Find the remainder when f_{2015} is divided by 2520.