Introduction to Number Theory

Walker Kroubalkian, Oshadha Gunasekara, Ricky Shapley

October 26, 2015

1 Primes

A prime is a number with two factors: 1 and itself. For example, 13 is a prime number because its factors are 1 and 13. There are infinitely many primes and only one even prime: 2 .

Primes form the basis of all numbers. Every number can be written as the product of one or more primes. Commonly we denote this as $n=p_{1}^{a_{1}} \cdot p_{2}^{a_{2}} \cdot p_{3}^{a_{3}} \ldots \cdot p_{n}^{a_{n}}$, where $p_{1}, p_{2}, p_{3}, \ldots p_{n}$ are distinct primes and $a_{1}, a_{2}, a_{3}, \ldots a_{n}$ are their exponents.

Examples:

1. Prime factorize 642 .
2. How many pairs of primes exist with sum 103 ?
3. Prove that there are infinitely many primes.

2 Divisibility

An integer a is considered divisible by another integer b if and only if b is a divisor of a. That is, $\frac{a}{b}=m$, for some integer m. We can denote this as $b \mid a$.

Divisibility Rules

2: If the units digit of n is even, then $2 \mid n$.
3: If the sum of the digits of n is divisible by 3 , then $3 \mid n$.
4: If the last two digits of n are divisible by 4 , then $4 \mid n$.
5: If the units digit of n is 0 or 5 , then $5 \mid n$.
6 : If n is divisible by 2 and 3 , then $6 \mid n$.
7: If $n-2(n(\bmod 10))$ is divisible by 7 , then $7 \mid n$.
8: If the last three digits of n are divisible by 8 , then $8 \mid n$.
9: If the sum of the digits of n is divisible by 9 , then $9 \mid n$.
10: If the units digit of n is 0 , then $10 \mid n$.
11: If the difference of the sum of the alternating digits is divisible by 11 , then $11 \mid n$.

Examples:

1. Find all a and b such that $11 \mid a 42 b 8$.
2. Find the sum of all $a+b$ such that $8 \mid 7485 b a$.

3 Modular Arithmetic

3.1 Identities

We can define modular arithmetic in the following way: if $a=c x+b$ for some integers a, b, c, and x, then $a \equiv b(\bmod c)$. Inversely, if $a \equiv b(\bmod c)$ then a leaves a remainder of b when divided by c. With this definition, we are able to derive a few identities.

Theorem 1. $a \equiv b(\bmod c)$ if and only if $c \mid a-b$. (Note: this can be seen in the Euclidean Algorithm).

Theorem 2. If $a \equiv b(\bmod e)$ and $c \equiv d(\bmod e)$, then $a \# c \equiv b \# d(\bmod e)$, where $\#$ denotes addition, subtraction, or multiplication.

Theorem 3. If $a \equiv b(\bmod c)$, then $a^{n} \equiv b^{n}(\bmod c)$ for integer exponents n.
Theorem 4. If $e \mid c$ and $a \equiv b(\bmod c)$, then $a \equiv b(\bmod e)$.
Theorem 5. If a and b satisfy $a b \equiv 1(\bmod c)$, then $a^{-1} \equiv b(\bmod c)$. We consider b to be the modular inverse of a.

Theorem 6. If $a+b \equiv 0(\bmod n)$, then $a \equiv-b(\bmod n)$.

Examples:

1. Find the remainder when $2001^{2001^{2001}}$ is divided by 1000 .
2. Prove that it is impossible for the square of an integer to leave a remainder of 2 when divided by 3 , or a remainder fo 2 or 3 when divided by 4 .

3.2 Chinese Remainder Theorem

Modular arithmetic also provides us with a very useful theorem called the Chinese Remainder Theorem.

Theorem 7. The Chinese Remainder Theorem. If m is relatively prime to n, then there is a one to one correspondence between the residues of $a(\bmod m)$ and $a(\bmod n)$ and the residue of a $(\bmod m n)$.

In other words, you can break the modulus (the part which you are dividing by) up into its distinct prime factors when trying to find a remainder.

Example: Sloan has a certain number of cultists which he wishes to divide into groups. He finds that if the cultists were divided int groups of 5 , there would be 1 left over. If the cultists were divided into groups of 7 , there would be 3 left over. If the cultists were divided into groups of 8 , there would be 4 left over. Finally, if the groups were divided into groups of 9 , there would be 5 left over. Given that Sloan's cult has diminished and now has less than 3000 cultists, what is the total number of cultists?

4 Numerical Bases

A numerical base is a number which defines the set of digits used to write a number. In normal mathematics, we use base 10 for most of our calculations, which has 10 unique digits that are used to write every number $(0,1,2 \ldots 8,9)$. Bases are denoted by subscripts, 31_{5} reads as 31 base 5 . To convert between bases, it is usually simplest to convert to and from base 10 .

Theorem 8. For a number $\left(a_{1} a_{2} a_{3} \ldots a_{n-1} a_{n}\right)_{b}$ where every a_{n} is a digit, the corresponding number in base 10 is $a_{n}+a_{n-1} \cdot b^{1}+a_{n-2} \cdot b^{2}+\ldots+a_{n-k} \cdot b^{k}+\ldots+a_{1} \cdot b^{n-1}$.

Theorem 9. To convert a number from base 10 to another base, you use a repeated algorithm:
1: Divide the desired base into the number you are trying to convert.
2: Write the quotient with a remainder.
3: Repeat this division process using the whole number from the previous quotient.
4: Repeat this division until the number in front of the remainder is only zero.
5: The answer is the remainders read from the bottom up.

Examples:

1. Convert 282_{10} to base 9 .
2. Convert 212_{3} to base 10 .

5 Multiplicative Functions

A multiplicative function is a function $f(x)$ such that when m and n are relatively prime, $f(m)$. $f(n)=f(m n)$ for all integers m and n. Multiplicative functions satisfy the following properties:
Theorem 10. If $f(x)$ is multiplicative, $f(1)=1$ or $f(x)=0$ for all x.
Theorem 11. If $f(x)$ is multiplicative, and the prime factorization of n is $p_{1}^{a_{1}} \cdot p_{2}^{a_{2}} \cdot p_{3}^{a_{3}} \ldots p_{n}^{a_{n}}$, then $f(n)=f\left(p_{1}^{a_{1}}\right) \cdot f\left(p_{2}^{a_{2}}\right) \cdot f\left(p_{3}^{a_{3}}\right) \ldots f\left(p_{n}^{a_{n}}\right)$.

There are some well-known multiplicative functions which often show up in competitions.

5.1 The Divisor Function

The Divisor Function, commonly referred to as $d(n)$ counts the number of factors of n. It can be computed by adding 1 to each of the exponents in the prime factorization of n and multiplying all of the results. That is, if $n=p_{1}^{a_{1}} \cdot p_{2}^{a_{2}} \cdot p_{3}^{a_{3}} \cdots \cdot p_{n}^{a_{n}}$, then $d(n)=\left(a_{1}+1\right)\left(a_{2}+1\right)\left(a_{3}+1\right) \ldots\left(a_{n}+1\right)$.

Example: Find the total number of factors of $37748736=2^{22} \cdot 3^{2}$.

5.2 The Sum Function

The Sum Function, commonly referred to as $\sigma(n)$ finds the sum of the factors of n. It can be computed by finding the sum of the factors of each of the prime powers in the prime factorization of n and multiplying the results. That is, if $n=p_{1}^{a_{1}} \cdot p_{2}^{a_{2}} \cdot p_{3}^{a_{3}} \ldots \cdot p_{n}^{a_{n}}$, then $\sigma(n)=\left(p_{1}^{a_{1}}+p_{1}^{a_{1}-1}+\right.$ $\left.\ldots p_{1}+1\right)\left(p_{2}^{a_{2}}+p_{2}^{a_{2}-1}+\ldots p_{2}+1\right) \ldots\left(p_{n}^{a_{n}}+p_{n}^{a_{n}-1}+\ldots p_{n}+1\right)$.

Example: Find the sum of the factors of 236.

5.3 Euler's Totient Function

The Totient Function, commonly referred to as $\phi(n)$ finds the number of integers between 0 and $n-1$ inclusive which are relatively prime to n. It can be computed by multiplying n by $\frac{p-1}{p}$ for all distinct prime factors p of n. That is, if $n=p_{1}^{a_{1}} \cdot p_{2}^{a_{2}} \cdot p_{3}^{a_{3}} \ldots \cdot p_{n}^{a_{n}}$, then $\phi(n)=n \cdot\left(\frac{p_{1}-1}{p_{1}}\right) \cdot\left(\frac{p_{2}-1}{p_{2}}\right) \ldots\left(\frac{p_{n}-1}{p_{n}}\right)$.

Euler's Totient Theorem has a very important application to number theory in Euler's Totient Theorem.

Theorem 12. Euler's Totient Theorem. If a and b are relatively prime to each other, then $a^{\phi(b)} \equiv 1(\bmod b)$.

This tells us that the modular inverse of $a(\bmod b)$ is congruent to $a^{\phi(b)-1}(\bmod b)$.
Example: Let $f_{0}=1$, and for $n \geq 1$, let $f_{n}=3^{f_{n-1}}$. Find the remainder when f_{2015} is divided by 2520 .

