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1 Solutions

1. Problem: How many terms are in the following sequence: 5, 8, 11, . . . , 302?

Solution: We notice that the sequence follows a pattern: start with 5 and subtract 3 from
the previous term to get the next term. Therefore, we can easily transform the sequence to
a consecutive sequence beginning with 1 by subtracting 2 from each term, then dividing each
term by 3.

5, 8, 11, . . . , 302→ 3, 6, 9, . . . , 300→ 1, 2, 3, . . . , 100

Therefore, there are 100 terms in the sequence.

2. Problem: John needs 3 strong people to help him move his furniture into his new house. He
remembers that he has 11 friends who constantly talk about the gym. How many ways can he
choose 3 people from his 11 strong friends?

Solution: Because the problem does not require that John choose his friends in different
orders, order does not matter and we must use combinations. He is choosing 3 from a group
of 11. Therefore, (

11

3

)
= 165 ways.

3. Problem: How many ways can 12 be written as the sum of 4 positive digits?

Solution: This problem requires casework. It is important to be organized when dealing with
casework because it can easily get out of hand. The following shows one way of representing
the cases.

(1, 1, 1, 9) (1, 1, 2, 8) (1, 1, 3, 7) (1, 1, 4, 6) (1, 1, 5, 5)
(1, 2, 2, 7) (1, 2, 3, 6) (1, 2, 4, 5)
(1, 3, 3, 5) (1, 3, 4, 4)

(2, 2, 2, 6) (2, 2, 3, 5) (2, 2, 4, 4)
(2, 3, 3, 4)

(3, 3, 3, 3)

This gives us 15 different ways.

4. Problem: (iTest 2007 #4) Star flips a quarter four times. Find the probability that the
quarter lands heads exactly twice.

Solution: We can represent a Tails being flipped with a T and a Heads being flipped with a
H. As such, we can represent flipping exactly two Heads with HHTT. Finding the total number
of ways this can be arranged will give us the amount of ways Heads can be flipped exactly
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twice. The number of arrangements of the group of letters HHTT is 4!
2!·2! = 6. There are a

total of 24 ways a quarter can be flipped four times. Therefore, the probability that two of the
flips are heads is 6

24 = 3
8 .

5. Problem: (AMC10 2004A #12) Henry’s Hamburger Heaven orders its hamburgers with the
following condiments: ketchup, mustard, mayonnaise, tomato, lettuce, pickles, cheese, and
onions. A customer can choose one, two, or three meat patties, and any collection of condi-
ments. How many different kinds of hamburgers can be ordered?

Solution: For each condiment, a customer may either order it or not. There are 8 condiments.
Therefore, there are 28 = 256 ways to order the condiments. There are also 3 choices for the
meat, making a total of 256 · 3 = 768 possible hamburgers from the Fundamental Counting
Principle.

6. Problem: A die is rolled 4 times. What is the probability that at least a 3 is rolled each
time?

Solution: Rolling a die four times constitute four independent events. Since each roll is
aiming to get at least a 3, the probability for each event will be equal. There are 4 favorable
outcomes: 3, 4, 5, 6. There are 6 total outcomes: 1, 2, 3, 4, 5, 6. Thus the probability for one
event is 4

6 = 2
3 . Therefore, the probability of rolling a die four times and getting at least a 3

each time is

(
2

3
)4 =

16

81

7. Problem: How many ways can 5 distinguishable balls be placed in 10 indistinguishable boxes?

Solution: First, we must notice that the question speaks of “indistinguishable boxes.” Since
the boxes cannot be distinguished, we must find how many ways the distinguishable balls can
be ordered. They can be ordered in 7 different ways, shown below.

(1) 1 1 1 1 1
(2) 1 1 1 2
(3) 1 1 3
(4) 1 2 2
(5) 1 4
(6) 2 3
(7) 5

Now, we must find the number of ways that distinguishable balls can be placed into each
arrangement. (1) and (7) both have 1 way because it does not matter which order they are
in. (2) has

(
5
2

)
ways because you must choose 2 balls to go into one box while the rest go into

others. (3) has
(
5
3

)
ways because you must choose 3 balls to go into one box. (4) has

(5
2)·(

3
2)

2

ways, because we must account for indistinguishability of the boxes. (5) has
(
5
4

)
ways because

you must choose 4 balls to go into one box. (6) has
(
5
2

)
ways because you need to choose 2

balls to go into one box. Adding up these values, we find

1 + 1 + 10 + 10 + 15 + 5 + 10 = 52 ways

8. Problem: (AMC10 2004B #2) How many two-digit positive integers have at least one 7 as a
digit?

Solution: We can use complementary counting. The complement of having at least one 7 as
a digit is having no 7s as a digit. We have 9 digits to choose from for the first digit, since
0 cannot be the first digit, and 10 digits for the second. As such, we have 9 · 10 = 90 total
two-digit numbers. Since we cannot have 7 as a digit, we have 8 first digits and 9 second digits
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to choose from. Thus, there are 8 · 9 = 72 two digit numbers without a 7 as a digit. Therefore,
there are

90− 72 = 18 integers

9. Problem: (AMC10 2001 #19) Pat wants to buy four donuts from an ample supply of three
types of donuts: glazed, chocolate, and powdered. How many different selections are possible?

Solution: Here, we can use stars and bars in a creative way. Let the donuts be represented
by stars. We wish to find all possible combinations of glazed, chocolate, and powdered donuts.
This gives us 3 groups and 4 donuts. Since there does not have to be a donut of each type,
we use 6 stars, 2 for the dividers and 4 for the donuts. We need to choose 2 out of the 6.
Therefore, there are (

6

2

)
= 15 possible selections

10. Problem: (AJHSME 1985 #15) How many whole numbers between 100 and 400 contain the
digit 2?

Solution: Here, we can use complementary counting. The total amount of numbers between
100 and 400 can be found by subtracting 100 from 400 and subtracting 1, because the word
“between” makes the set exclusive. This gives us a total of 299 numbers. Now we need to find
how many numbers do not have the number 2. There are 2 possible digits for the hundred’s
digit (1, 3), 9 possible digits for the ten’s digit (1, 3, 4, . . . , 9, 0) and 9 possible digits for the
one’s digit (1, 3, 4, . . . , 9, 0). This gives us 2 · 9 · 9 = 162 numbers. However we must subtract 1
because we included 100 in this count, giving us 162−1 = 161 numbers without a 2. Therefore,
there are

299− 161 = 138 numbers satisfying the condition

11. Problem: (AMC12 2005A #11) How many three-digit numbers satisfy the property that the
middle digit is the average of the first and the last digits?

Solution: Let the digits be A,B,C so that B = A+C
2 . In order for this to be an integer,

A and C have to have the same parity. This means they must be either both even or both
odd. There are 9 possibilities for A (1, 2, 3, . . . , 8, 9) and 5 for C (each digit has 5 other digits
which have the same parity). Moreover, there is 1 possible value of B for each pair (A,C).
Therefore, there are

9 · 5 · 1 = 45 numbers

12. Problem: What is the maximum number of possible points of intersection of 100 circles?

Solution: This is a pattern recognition problem. We must find a simple way to find the
maximum number of intersections of n circles. Notate I(n) to be the maximum number of
intersections of n circles.

I(0) = 0

I(1) = 0

I(2) = 2

I(3) = 6

I(4) = 12

We begin to notice a pattern. Starting from I(0), we add 0, then 2, then 4, then 6. We are
adding consecutive even numbers. Because of this, we can base our general formula on the
formula for the sum of n consecutive even numbers, n(n + 1). We notice that the sequence
seems to be shifted up by one term. Thus, our general formula will be I(n) = n(n− 1). From
this,

I(100) = 100 · 99 = 9900 intersections
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13. Problem: What is the coefficient of x3 in the expansion of the following: (1 + x + x2 + x3 +
x4 + x5)6 ?

Solution: This problem uses an interesting property of polynomial multiplication. That is,
when multiplying two polynomials (1+x+x2+x3+. . .+xn) and (1+x+x2+x3+. . .+xm), the
coefficient of the xk term can be found by counting the number of ways k can be made using
the sum of an exponent of the first polynomial and an exponent from the second polynomial.
For example, if we wish to find the coefficient of x3 of (1 + x + x2)2, we find how many ways
we can make 3 adding one element from each of the two sets {0, 1, 2} and {0, 1, 2}. We find
that there are 2 ways to do this ((1, 2) and (2, 1)). Remember, order does matter. Thus the
coefficient of x3 is 2.

Back to the problem, we see a similar situation. In this case, we have six identical polynomials.
Therefore, we can essentially rewrite the question into “How many ways can we write 3 as the
sum of 6 non-negative integers, where order does matter?” This is a simple stars and bars
application. We have 8 stars, 3 representing the number and 5 representing the dividers. We
need to choose 5 dividers. Therefore, we the coefficient of x3 is(

8

5

)
= 56

14. Problem: (AMC10 2002B #9) Using the letters A,M,O, S, and U , we can form 120 five-
letter “words”. If these “words” are arranged in alphabetical order, then the “word” USAMO
occupies which position?

Solution: There are 4! · 4 “words” beginning with each of the first four letter alphabetically.
From there, there are 3! · 3 “words” with U as the first letter and each of the first three letters
alphabetically. After that, the next “word” is USAMO. Therefore, the answer is

4! · 4 + 3! · 3 + 1 = 115

15. Problem: (AMC10 2001 #25) How many positive integers not exceeding 2001 are multiples
of 3 or 4 but not 5?

Solution: This problem is a fairly direct application of the Principle of Inclusion and Ex-
clusion. First, we find the numbers not exceeding 2001 that are multiples of 3 or 4. From
PIE, this is

⌊
2001
3

⌋
+

⌊
2001
4

⌋
−

⌊
2001
12

⌋
= 1001 numbers. To account for the “but not 5” in the

problem, we must subtract the numbers not exceeding 2001 that are multiples of 15 (LCM of
3 and 5) or 20 (LCM of 4 and 5). From PIE, this is

⌊
2001
15

⌋
+
⌊
2001
20

⌋
−
⌊
2001
60

⌋
= 200 numbers.

Therefore, the amount of numbers not exceeding 2001 that are multiples of 3 or 4, but not 5 is

1001− 200 = 801

16. Problem: (AMC10 2002A #22) A set of tiles numbered 1 through 100 is modified repeatedly
by the following operation: remove all tiles numbered with a perfect square, and renumber
the remaining tiles consecutively starting with 1. How many times must the operation be
performed to reduce the number of tiles in the set to one?

Solution: If we repeatedly record the number of tiles left after the set is modified, we can see
the number of tiles reduces to the next lowest square after 2 iterations. This can be seen in
Table 1 on the next page.

By this method, we find that the operation must be performed 18 times.
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Table 1: Removing Tiles

Number Removed Left

1 10 90
2 9 81
3 9 72
4 8 64
5 8 56
6 7 49
7 7 42

. . . . . . . . .
16 2 4
17 2 2
18 1 1

17. Problem: (AMC10 2003A #21) Pat is to select six cookies from a tray containing only
chocolate chip, oatmeal, and peanut butter cookies. There are at least six of each of these
three kinds of cookies on the tray. How many different assortments of six cookies can be
selected?

Solution: We must find the amount of ways that we can split the 6 cookies into 3 groups, where
each group does not have to have a cookie. Here we have 8 stars, 6 representing the cookies
and 2 representing the dividers. We need to choose 2 dividers from the 8 stars. Therefore,
there are (

8

2

)
= 28 different assortments

18. Problem: (AMC10 2006B #17) Bob and Alice each have a bag that contains one ball of each
of the colors blue, green, orange, red, and violet. Alice randomly selects one ball from her bag
and puts it into Bob’s bag. Bob then randomly selects one ball from his bag and puts it into
Alice’s bag. What is the probability that after this process the contents of the two bags are
the same?

Solution: Since there is the same amount of balls in Alice’s bag and Bob’s bag, and there is
an equal chance of each ball being selected, the color of the ball that Alice puts in Bob’s bag
doesn’t matter. Without loss of generality, let the ball Alice puts in Bob’s bag be red. For
both bags to have the same contents, Bob must select one of the 2 red balls out of the 6 balls
in his bag. Therefore, the desired probability is 2

6 = 1
3 .

19. Problem: (AIME I 2002 #1) Many states use a sequence of three letters followed by a
sequence of three digits as their standard license-plate pattern. Given that each three-letter
three-digit arrangement is equally likely, the probability that such a license plate will contain
at least one palindrome (a three-letter arrangement or a three-digit arrangement that reads
the same left-to-right as it does right-to-left) is m

n , where m and n are relatively prime positive
integers. Find m + n.

Solution: Using complementary counting, we count all of the license plates that do not have
the desired property. In order to not be a palindrome, the first and third characters of each
string must be different. Therefore, there are 10 · 10 · 9 three digit non-palindromes, and there
are 26 · 26 · 25 three letter non-palindromes. Since there are 103 · 263 total three-letter three-
digit arrangements, the probability that a license plate does not have the desired property is
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10·10·9·26·26·25
103·263 = 45

52 . We subtract this from 1 to get the desired probability, 7
52 . Therefore, the

answer is 7 + 52 = 59.

20. Problem: (AIME I 2012 #1) Find the numbers of positive integers with three not necessarily
distinct digits, abc, with a 6= 0 and c 6= 0 such that both abc and cba are multiples of 4.

Solution: A positive integer is divisible by 4 if and only if its last two digits are divisible by
4. For any value of b, there are two possible values for a and c, since we find that if b is even,
a and c must be either 4 or 8, and if b is odd, a and c must be either 2 or 6. Therefore, there
are 2 · 2 = 4 ways to choose a and c for each b, and 10 ways to choose b since b can be any
digit. Therefore, the answer is 4 · 10 = 40.
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